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CHAPTER 1

Introduction

In this thesis, we study integrability for nonlinear dynamical systems including differential
equations and discrete equations based on the soliton theory. Furthermore, we study applica-
tions of the soliton theory to numerical algorithms.

1. History of soliton theory

The notion ofsolitonmeans the solitary wave that travels stably and preserves its shape after
interactions. The first literature about the soliton equations was presented in 1895 by Korteweg
and de Vries. They presented the differential equation

3
L R (1.2)

which describes the propagation of a shallow water wave. The dispersiodteyi@x® causes

the wave to be scattered to many waves that have different phase velocities. The nonlinear
termudu/dx varies the velocity of the wave according to the amplitude of the wave, then the
wave stands erect and soon collapses. From those reasons, it was believed that there did not exist
stable solitary wave for nonlinear evolution equations, until Korteweg and de Vries succeeded to
derive the equation that had the exact solution of solitary wave. From the balance of dispersion
and nonlinearity, the solution was obtained. The equation they presented is nowadaythealled

KdV equation.

Although the KdV equation was discovered at early year, the next development of it had
not appeared until the resear@9] by Zabusky and Kruskal in 1965. Using computers, they
simulated the KdV equation numerically. They set the initial condition as the superposition
of two pulses, both of which were exact solutions of solitary wave of the KdV equation. They
computed a time evolution of the waves with periodic boundary condition. Two pulses moved to
same direction by different velocities, because they had different amplitudes. The higher pulse
traveled faster than the lower one. Zabusky and Kruskal observed the behaviors of interactions
of pulses. From the results of the experiment, they discovered that each pulse preserved its shape
and its velocity after the interactions. Moreover they discovered that positions of pulses were
shifted at the interactions. That phenomenon is called a phase shift. Solitary waves behaved
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like particles. Then they named such solitary wave as the ‘soliton’ (a suffix ‘-on’ stands for
a particle). Their numerical experiments found a new phenomenon for nonlinear evolution
equations. This discovery was also important as an example of contributions of computers to
developments of mathematics.

Next epoch-making discovery wéise inverse scattering transfor(fST) [23], which was
presented by Gardner, Greene, Kruskal, and Miura in 1967. By the IST, we transform a given
evolution equation to a certain linear integral equation. Then we can solve initial value problem
in principle. Another method for solving soliton equation was developed by Hirota in 1970s
(cf. [29-[39], [43], [45]). It is calledHirota’s direct method.By the direct method, we can
solve soliton equation directly not via the IST. The direct method firstly transform a given
equation to so-calleHirota’s bilinear form Then we exactly obtain exaltsoliton solution by
calculating a perturbation of the bilinear form. That solution is also expressed as a determinant.
Such determinantal solution is calldge T-function solution.And the bilinear form is reduced
to a certain identity of determinants.

The invention of the direct method also brought to us the techniques to discretize soliton
equations (cf.39]-[42], [44]). Preserving the structure of thefunction, we do discretize the
evolution equation, the independent variable transformation, the bilinear form, and the solu-
tion, simultaneously. Such discretization is sometimes cateohtegrable discretizationkor
example, the discrete KdV equatiadd is given by
i1 1 1

t+1
U U= T
n+1 n

(1.2)

Many discrete soliton equations are now presented.

In early 1980s, Sato discovered that théunction of the Kadomtsev-Petviashvili (KP)
equation is closely related to algebraic identities such as determinant identities. Moreover, he
found that the totality of solutions for the KP equation and its higher order equations constitute
an infinite dimensional Grassmann manifold.

2. Integrability conditions

The notion of integrability is rigidly defined for Hamilton systems. If a Hamilton system
of N degree of freedom has independent and mutually involutive integrals, then the system
of ordinary differential equations (ODES) is integrable in the sense in which the system can
be linearized in terms of successive canonical transformations. This is the main result in the
Liouville-Arnold theory. For partial differential equations (PDES), there is no rigid definition
determined yet. However there are candidates for integrability conditions of those systems.
2



From studies on soliton equations, the following properties are now accepted as definitions of
integrability for PDEs.

(1) Solvability by IST.

(2) Existence ofN-soliton solution.

(3) Existence of infinite number of conserved quantities or symmetries.
(4) Existence of Lax pairg3)].

(5) Existence of bilinear form.

Generally it is not easy to obtain explicit solutions and conserved quantities for a given
nonlinear equation. So we want to detect whether an equation is integrable or not beforehand.
Thus the following integrability criteria have been proposed:

(a) The Painleg test for ODE.

(b) The Weiss-Tabor-Carnevale (WTC) method for PDE.
(c) The singularity confinement test for discrete equation.
(d) The algebraic entropy test for discrete equation.

Those criteria are also used for deciding the values of parameters of an equation that has a
possibility of integrability. We shall briefly introduce them.

We first consider ODE. The singularities of a linear ODE all depend on coefficients of the
equation. However the singularities of a nonlinear equation often depend on initial values. We
here consider a simple example

dy
=7 —0. 1.
Ty =0 (1.3)
The general solution of this equation is given by
1
y(X) = C (1.4)

The singularity ofy(x) occurs ak = C. Since the constaftis determined b = —1/y(0), the
singular point is moved according to the initial value. Such singular point is calledvable
singular point. If any movable singular point of an equation is not critical point, namely all
movable singular points are poles, then it is called that the equatiothé@d&inlee property.
The Painlee property is used for a criterion of integrability of ODE. We shall briefly review
the history of applications of the Painkyroperty.

In 1889, Kowalevskya presented a new integrable case of the rigid body about fixed point.
The equation of motion of the rigid body is sixth order ODE with six parameters. People at that
time knew that only two cases of the equations are integrable when the parameters are special-
ized as some values. Those equations are called Euler’s top and Lagrange’s top respectively. In

3



order to solve the equation, Kowalevskya restricted the solution to no movable singular point
except for movable poles. Under that condition, she specified the parameters and succeeded to
integrate the equation. The equation she presented is now called Kowalevskya'’s top.

In 1900s, Painle¥ and co-workers presented so-callee Painlee equationsThey inves-
tigated nonautonomous second order ODEs, and enumerated all equations that had no movable
critical point. They classified the equations and showed that the equations are essentially re-
duced to six types of new equations and known ones. Solutions of those six equations are called
the Painle@ transcendents.

We here show how to check the Pairégwoperty of a given ODE. Let a movable singularity
of y(x) occur atx = C. Then we expang(x) around the poink = C by the Laurent series

C(x—C Yy, (x—C)I. (1.5)
y(X) = (x )j;y, (x—C)

We first check whether the singularity is a pole. It needs that the leading ardea finite
negative integer. If the leading order was a rational integer or an infinite integer, then the
singularity became a branch point or an essential singularity. Next we check that the Laurent
coefficientsyj have enough ambiguity. It needs that the number of arbitrary constaytsuodl
the initial constanC is the same as the time of differentiations of the equatiora dhdyj;
satisfy those conditions and the expansion has no inconsistency, then it is said that the equation
passes the Painlevest.

We next consider PDE case. A conjecture about integrability for PDE was proposed by
Ablowitz, Ramani, and Segul[ 2, 3. They stated that:

Every nonlinear ODE obtained by an exact reduction of a nonlinear PDE that is
solvable by IST has the Painkeyroperty.

Many soliton solutions are known to have this property. The KdV equation is actually reduced

to an equation of elliptic function by a reduction of traveling wave solution. The modified KdV

equation is reduced to the Paindegquation of type Il by a reduction using similarity solution.
However, it is impossible to check the Pairdeproperty of all ODEs obtained by all re-

duction of a given PDE. Thus Weiss, Tabor, and Carnevale proposed a method to check the

Painlee property of PDE directly not via reductions. This method is calledWTC method

[84]. We briefly show the procedure of the WTC method. Let singularities of solutigrt)

for a nonlinear PDE occur on a manifofgx,t) = 0. We assume that the functigg(x,t) is an

arbitrary function, and that the solution is expressed as a formal Laurent series

[ee]

ux,t) = ()& Y ui(x,t) @(x,t) . (1.6)
2"
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We check that the leading ordaiis a finite negative integer, and that the number of arbitrary
functions ofuj and¢ is the same as the order of the differential equatiom, ifi and ¢ satisfy
those conditions and the expansion has no inconsistency, then it is said that the PDE has the
Painlewe property. If it is necessary to restrigt and @ to some conditions, then it is said that
the equation has the conditional Pairdgroperty. An evolution equation that has a conditional
Painle\e property is considered as a near-integrable system. In this thesis, we consider stability
of such an equation.

Next we consider discrete equation. A criterion for discrete systems was first proposed by
Grammaticos, Ramani, and Papageorgi®].[ Their criterion is based on the property tbe
singularity confinemen(SC). The SC property means that:

The singularities of a discrete system are movable, i.e., they depend on initial
conditions. And the memory of the initial conditions survives past the singularity
by a few steps.

The property of the SC is accepted as a discrete version of the Rajmeperty. The discrete
Painlee equations and many discrete soliton equation pass the SC test.

The SC test has been a useful criterion. However, Hietarinta and Viallet presented an equa-
tion that passes the SC test but has numerically chaotic pro@dity Then they proposed a
more sensitive criterion. Their criterion is basedtbe algebraic entropyhat is defined by the
logarithmic average of a growth of degrees of iterations. The algebraic entropy test and the SC
test are similar to each.

The SC type criteria are effective in reversible discrete systems such as soliton equations.
However they are ineffective in irreversible discrete systems. For example, the arithmetic-
harmonic mean algorithn6p],

an+ bn 2anbn
= y b =,
ant1 > n+1 an -+ bn

has the explicit solution, however does not pass the SC test. We consider in the thesis integra-
bility of such equations.

(1.7)

3. Integrable systems and numerical algorithms

The soliton theory has been developed in mathematics, physics and engineering. The op-
tical soliton communicationZ6] is a famous example of application of the soliton theory to
communication engineering. There are also applications to mathematical engineering. A close
relationship between soliton equations and numerical algorithms has been pointed out. We
enumerate those numerical algorithms and related integrable systems as follows.
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e Matrix eigenvalue algorithms
— 1-step of the QR algorithm is equivalent to tirhevolution of the ordinary Toda
equation ¥5] (see [/3)).
— The LR algorithm is equivalent to the discrete Toda equatéi@h(see }A6)]).
— The power method with the optimal shift is derived from an integrable discretiza-
tion of the Rayleigh quotient gradient system (s8@)]
e Convergence acceleration algorithms
— The recurrence relation of treealgorithm B5] (cf. the Shanks transforny()) is
equivalent to the discrete potential KdV equation (&&)[
— The p-algorithm Bf] is equivalent to the discrete cylindrical KdV equation (see
[68]).
— Then-algorithm is equivalent to the discrete KdV equation (&&&)[
— Then-th term of theE-algorithm is equivalent to the solution of the discrete hun-
gry Lotka-Volterra equation (se@&f)).
e Continued fraction algorithms (Pa@pproximations)
— The recurrence relation of the gd algorithm for calculating continued fraction is
equivalent to the discrete Toda equation.
— The ordinary Toda equation gives a method for calculating Laplace transforms via
the continued fraction (seé7]).
— A new Pa@ approximation algorithm is formulated by using the discrete Schur
flow (see p5)).
e Decoding algorithms
— A BCH-Goppa decoding algorithm is designed by the Toda equation over finite
fields (see$9)).
e Iteration methods having higher order convergence rate
— The recurrence relation of the arithmetic-geometric mean algorithm has the solu-
tion of theta function (se€lB)).
— The recurrence relation of the arithmetic-harmonic mean algorithm has the solu-
tion of hyperbolic function (seep)).

From these results, one may conjecture that a good numerical algorithm is regarded as
an integrable dynamical system. Indeed, eigenvalue algorithms and acceleration algorithms,
which are essentially linear convergent algorithms, pass the SC test of integrability criterion
(cf. [68]). Moreover, they are proved to be equivalent to discrete soliton equations via Hirota’s
bilinear forms. However, some algorithms having higher order convergence rate do not pass
this integrability criterion, as we mentioned in the previous section. It needs more discussions
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about integrability for such equations. We consider integrability of algorithms in the thesis.
Furthermore, we develop numerical algorithms using the techniques in the soliton theory.

4. QOutline of the thesis

The thesis is organized as follows.

In Chapter 2, we consider a generalized derivative nonlineard8siger (GDNLS) equa-
tion. The equation is derived by adding two dispersion terms to the nonlineaddhater
(NLS) equation$1, 26, which describes a propagation of pulses in optical fibers. The GDNLS
equation has two parameters. We first construct a traveling wave solution for arbitrary values
of parameters. We next investigate integrability of the GDNLS equation by the WTC method
of the Painleg test. We show that the equation has the Painf@operty and a conditional
Painlee property for some conditions of parameters. By numerical experiments, we examine
stability of the traveling wave solutions in interactions.

In Chapter 3, we consider an extension of the Steffensen meftiyd The Steffensen
method is an iteration method for finding a root of nonlinear equations. Its iteration function is
constructed without any derivative function, and it has the second order convergence rate. The
point to devise our extended method is that the iteration function is defined by usikghhe
Shanks transform which is a sequence convergence acceleration algorithm. The convergence
rate is shown to be of orddr+ 1. The use of the-algorithm avoids the direct calculation of
Hankel determinants, which appear in the Shanks transform, and then diminishes the compu-
tational complexity. For a special case of the Kepler equation, it is shown that the numbers of
mappings are actually decreased by the use of the extended Steffensen iteration.

In Chapter 4, we give new determinantal solutions for irreversible discrete equations. The
equations considered are solvable chaotic systems and the discrete systems which are derived
from iteration methods having higher order convergence rates. We deal with the hierarchy of the
Newton type iterations (the Newton method and Nourein metbd}),[that of the Steffensen
type iterations (the Steffensen method and the extended Steffensen method in Chapter 3), and
that of the Ulam-von Neumann systei#7]. We obtain determinantal solutions for those sys-
tems including solvable chaotic systems in terms of addition formulas derived from some linear
systems.

In Chapter 5, we finally state some remarks and further problems.



CHAPTER 2

Solution and Integrability of a Generalized Derivative Nonlinear
Shrodinger Equation

1. Introduction

In this chapter, we consider the following equation,

. 1 . .
Ui+ 5 Uoct [UPU +ia |UPU+iBUAUL =0, (2.1)

whereU = U (x,t) is a complex variable anddenotes a complex conjugate. Moreowemrnd
B are real parameters. Eq. (2.1) is reduced to the well-known nonlinead@eber (NLS)
equation

o1
|Ut+§UXX+|U|2U =0 (2.2)

for a = 3 = 0. Moreover, Eq. (2.1) yields two types of derivative nonlinear 8dinmger equa-
tions which are known to be integrable, namely the case g8 = 1: 0[58]

o1 .
|Ut+§Uxx-|-|U|2U +i|U2Uy =0, (2.3)

andthecaseaf : 3 =2:1[83]
: 1 2 ) 20
|Ut+2UXX+\U| U +2ilU|“Ux+iUUy =0. (2.4)

Hereafter we call Eq. (2.1) a generalized derivative nonlineardlohger (GDNLS) equation.
We note that the GDNLS equation (2.1) can be regarded as a special case of the higher order
nonlinear Schidinger equation proposed by Kodama and Haseg&tja [

_— . - i
Ut + SUoct [UPU +ia U PU+HBUPUL +iyUox=0 (2.5)

which describes the pulses in optical fibers.

Itis remarked that the terfly |°U can be eliminated by a gauge transformatié®.[ Egs. (2.3)
and (2.4) without this term are known as the Chen-Lee-Liu (CLL) equalibjgnd the Kaup-
Newell (KN) equation$Q], respectively. The CLL equation was discussed by using the bilinear
formalism by Nakamura and Chebg]. Hirota [47] bilinearized the KN equation and showed

8



that the CLL equation and the KN equation have the same bilinear forms. A class of solutions
for the CLL, KN equations and their integrable generalization by Kud@h [

1 . .
U+ 5 Uoct 20y U [PUx+2i(y— 1)UPU; + (y—1)(y—2) [U[*U =0, (2.6)

wherey is a real parameter, has been constructed explicitly through the bilinear formalism by
Kakei et al. A9].

We first construct a traveling wave solution of the GDNLS equation (2.1) in Section 2. Moti-
vated by a concrete form of the solution, we investigate the integrability of the GDNLS equation
by using the Painlay test in Section 3. Finally we examine a behavior of the traveling wave
solution numerically in Section 4. In Section 5, we mention several remarks of this chapter.

2. Traveling wave solution

In this section, we construct a traveling wave solution for the GDNLS equation. Here we
remark that the values of parametersf3 in Eq. (2.1) are taken to be arbitrary by the scale
change except for the ratj®/a, and hencg8/a can be regarded as a characteristic parameter
of the equation.

Eq. (2.1) is invariant under the following transformation

1 -~ : v
Uxt)= —U(X,T)e VX-2T) 2.7
(x,t) NG (X,T) (2.7)
where
x=k(X—-VT), t =Kk°T, k=1-Va+Vp (2.8)

andV is an arbitrary constant. Taking this invariance into account, we first construct a stationary
solution. We put

U (x,t) == r(x)exp(i 6(x)) exp(i wt), (2.9)

wherer(x) and 8(x) are real functions irx, andw is a real constant. Substituting (2.9) into
Eqg. (2.1), we get

My = 208 —2r3 4162 +2(a — B)r6y (2.10)

from the real part and

o Ixbx
Boc= —2—

—2(a+B)rry (2.11)

9



from the imaginary part, respectively. The following ansatz is crucial for our construction of
solution

6=kKr, (2.12)

wherek is a constant. We obtain from Eq. (2.11)

(2k+a+pB)rry=0, (2.13)
from which we have
k= _9+B (2.14)
2
Then Eqg. (2.10) becomes
rXX:Zwr—ZrS—%(G+B)(3a—5ﬁ)r5. (2.15)
Integrating Eq. (2.15), we obtain
2/2wx
(2 — Buwe* . (2.16)
1+2ef2V20x 1 (14 20(a + B) (30 — 5P)) ex4v2wx
Moreover, we get from Egs. (2.12), (2.14) and (2.16)
o__ [3@tp) (1+ (14 5w(a +B)(3a —5B)) eﬂ@X) 2.17)
3a—5B \/1+§w(a+ﬁ)(3a—53)
where the following conditions should be satisfied that
w>0, 1+§w(a+ﬁ)(3(1—5ﬁ)20 (2.18)

for the reality ofr and6. Substituting Egs. (2.16) and (2.17) into Eqg. (2.9), we have the station-
ary wave solution. Then, applying the transformation (2.7)—(2.8), we obtain the traveling wave
solution. The result is expressed as

N+1

ot - il (Sose)
Here we define functiop(x,t) as
¢:mﬁémq+¢m. (2.20)
And we define parametes Q, P, Q, andN as
p=(1-Va+VB)Q+iV, (2.21)
Q=+2w, (2.22)

10



P=(1-Va+Vp) <1+Q\/ %a+ﬁ 3a— 5B)> (2.23)
1
Q= (1-Va+Vp) (1 Q\/ §a+[3 )(3a — 53)) (2.24)
_ [3(a+PB)

and¢© andV are arbitrary constants. The condition (2.18) is also necessary here. This solution
is characterized by the parametesrandV for fixed a andf3. The shape of the solution varies
by the value of

D:PQ:(1—Va+VB)2{1+§w(a+ﬁ)(3a—5ﬁ)}. (2.26)

In fact,|U| is given by

4 p*)2ep+or
Vi= \/1+2(ZP+<E*)+De2<¢+<P*>' (2:27)

If D is sufficiently large, the solution has the soliton-like shape. Fer O, it becomes trape-
zoidal shape and fdd — O, it has the kink-like shape as illustrated in Figure 2.1. Hence the
traveling wave solution (2.19) may behave as a solitary wave.

Here we remark that if we take the limit, 3 — 0, this solution is reduced to the 1-soliton
solution of the NLS equation. Similarly, in the casesBofa = 0andf/a = 1/2, it gives the
1-soliton solution of Egs. (2.3) and (2.4), respectively.

It should be emphasized thatNf, which depends only on the ratio af and 3, is an odd
integer, the traveling wave solution (2.19) is rational in exponential functions which is the com-
mon feature of soliton solutions. Thus it might be expected that in such cases, solitary waves of
the GDNLS equation has good properties like that of integrable cases. The ratianaff3 in
such cases are given by

B 3m(m+1)
S_— 7 =0,12,.... 2.28
a 5mm+1)+2° m=5%%4 (2.28)

The casesn= 0andm= 1 correspond to Egs. (2.3) and (2.4), respectively, and they are known
to be integrable as mentioned in the introduction.

Moreover, it should be noted that the 1-soliton solution for Eq. (2.6) obtained by Kakei et
al. [49] has a quite similar form to Eq. (2.19). Indeed, we can check that 1-soliton solution of
equation (2.6) foy = 0,1 equivalent to (2.19) foN = 1, 3, respectively, and not for other cases.

11
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FIGURE 2.1. Shape of traveling wave solution far=1, w=1/2andV =1/2.
Solid line: B =0, D = 0.5. Dotted line:3 = 0.91355 D = 0.00000976 Dashed

line: B = 0.9135528-- = (—1+ +/31)/5,D = 0.

From the observation above, it may be natural to ask whether the cases bin Eq. (2.28)
are integrable or not. As for the integrability in a strict sense, the answer is no. In fact, Clarkson

and Cosgrovel7] investigated the Painlévproperty to the following equation,
(2.29)

i U + Uy + 10 UL Uy + 1B U204+ yudu2 + 3 uPu* = 0

wherea, B, y, andd are real parameters, and shown that it is integrable only the case when

it is equivalent to Eq. (2.6). However, we may expect some information from integrability test
which distinguish the cases of Eq. (2.28) from other cases. We consider the integrability of the

GDNLS equation (2.1) in the next section.

3. Painlewe test

In this section, we investigate the integrability of the GDNLS equation by using so-called
the Painlee test proposed by Weiss et 84], and show that the GDNLS equation possesses

“conditional Painlee property” for the cases of Eq. (2.28).
12



Following to the procedure of the test, we regard thatU andv =U* are independent,
and consider the GDNLS equation as a coupled system

. 1 . .

U+ 5 U+ UPV+iouuyv+iBudvy =0, (2.30)

. 1 . .
—|vt+vax+v2u—|avvxu—|[3v2ux:0. (2.31)

We assume the formal Laurent expansion around the zero points of some analytic function
@(x,t) for the solution of Egs. (2.30) and (2.31)

u=¢*y uj @, v=0"S vj¢'. (2.32)
2 2

In this method, if

(1) there is no movable critical points, namely, the leading ordarsdb are finite integers,
(2) the expansion (2.32) has sufficient number of arbitrary functiprsdyv;,
(3) there is no incompatibilities in the expansion,

then it is regarded that the equation passes the Paitdsst, or it is said that the equation pos-
sesses the Painleproperty. In such case, it is usually believed that the equation is integrable.
We show the concrete analysis in the following.

3.1. Leading order analysis.To get the leading powex andb, we substituteu ~ ug ¢@*
andv ~ vo ¢ into Egs. (2.30) and (2.31). We obtain the relation

a+b=-1, (2.33)
to adjust the leading order, and find
1 3(a+pB)
a_2<—1i 301—53) , (2.34)
UpVp = i 3 (2.35)
O\ (a+p)Ba—5p) |

Sincea andb should be integers, we get the condition

B _ 3m(m+1)

= =0,12,... 2.36
a 5m(m+1)+2; m ) ==y & ( )

which is exactly the same as the condition (2.28).
13



3.2. Resonance analysisThe degreq is calledresonancevhenu; or vj becomes an ar-
bitrary function. The recurrence relation foy andyv; is given by

<AE11-1§ A%%) (uj> = <Fj) i=0,1,23,.... (2.37)
A A% )Y G;

Here we define elemenxxgj), A(ljz) Aé_’l) andAgz) as

Al = %(j +a—1)(j+a)@+i{a(j+2a)+2Bb}ugvo, (2.38)
A =i{aa+B(j+b)} e (2.39)
A = —i{ab+B(j+a) W3, (2.40)
A = %(j +b—1)(j +b)gZ—i{a(j +2b) +2Ba}uovosk. (2.41)

And we defineF; andG; as some polynomials afj, vj and¢ such that

Fj = Fj(uo,...,Uj—1,V0,-.-,Vj—1, ), (2.42)
Gj =Gj(uo,...,Uj—1,V0,-..,Vj-1,0). (2.43)

Moreover we definej = vj =0for j <O.
We shall obtain the resonances. Coefficienor vj can be an arbitrary function when the
condition

AV AN 1,
det( @ ()= 2% (+Di(i-2(-3)=0 (2.44)
Asi Ay
is satisfied. Hence we find that the resonances are

j=-1,0,2,3. (2.45)

3.3. Compatibility condition. If the degreg is a resonance, the recurrence relation (2.37)
should satisfy the compatibility condition

A Al —AD A — F g (2.46)
or
Fj=0, Gj=0. (2.47)

We shall check the compatibility for each resonance. Resonprce-1 corresponds to the
arbitrariness ofp. The compatibility condition is not necessary foe —1. Whenj = 0, we
14



haveFy = Gg = 0. Whenj = 2, we next obtain the relation

ﬁ — ﬁ _R_, 2@m+ 1)auo* (2.48)
A(221) A(222) Gy (5m2 +5m+2)i g ' .

Thus we have checked the compatibility for the resonarjces),2. The resonancg = 0
corresponds to the arbitrarinesswef or vp, and j = 2 to that ofu, or vo. For j = 3, if the
condition

Vo(m—+1)(m—1)

@ (2m+1) (Caxp e — (ﬂt(&z - (qukx) =0, (2.49)
or

Up(M+2)m .

oy 1) ARG W~ # o) =0, (2.50)

is satisfied, then it is shown that the expansion is compatible. Therefone$00 andl, the
compatibility conditions are automatically satisfied. However,nioe 2,3,4, ..., the function
@(x,t) should satisfy

20x@ % — @@ — @ Px =0 (2.51)

to pass the test.

From this result, we may conclude that the GDNLS equation (2.1) possesses theéainlev
property for the cases ofi= 0andlin Eq. (2.28) which are known to be integrable. Ror 1,
it does not pass the test in strict sense, but possesses “conditional Pgirdeerty” B7, 89.
For other cases, it does not pass the test.

It may be interesting to remark here that the condition (2.51) yields the dispersionless KdV
equation

fi—ffx=0 (2.52)
by the dependent variable transformation

f=>. 2.53
o (2.53)

We also note that exactly the same condition has appeared in the analysis of some system
which describes the interaction of long and short water wa®@sg4g. In [87, 89, Yoshinaga
conjectured that the equation which passes the Pa&iéest with the condition (2.51) has “finite-
time integrability”, since the solution of Eq. (2.52) loses analyticity in finite time as is well-
known, and thus the assumption of the Paialeast breaks.
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4. Numerical experiments

4.1. Purpose.From the result of the Painléuvtest, the GDNLS equation is not integrable
in strict sense except for the casas= 0 and1 in Eq. (2.28). However, from the structure of
the traveling wave solution, one may expect that the solitary waves behave like solitons even if
the equation itself is not integrable. Motivated by this, we numerically solve the initial value
problem for the GDNLS equation to check the following points:

(1) Stability of solitary waves in interactions.

(2) Existence of phase shift.

(3) Quantity of ripple which is generated by interactions.

(4) Any phenomenon which implies “finite-time integrability.”

If (1) and (2) are observed, then it can be said that the solitary waves behave like solitons. We
investigate (3) from the following reason: Suppose we observe the interaction of two different
solitary waves. If the equation has a 2-soliton solution, it must approximate the initial state well
at some with some values of parameters. Then we may expect that the ripple which emerges
through the interaction is quite small. Conversely, if the ripple which is observed for some val-
ues ofa andp is small compared to other cases, then we may expect the existence of 2-soliton
solution, or at least, it may be worth in further analysis. Moreover, it might be interesting to
check whether the behavior of solutions differs or not by the cases that the GDNLS equation has
the Painlee property, the conditional Painkeproperty and the other cases. From theoretical
point of view, 3/a = 0.6 might be a critical point, since if the GDNLS equation possesses the
conditional Painleg property, thei8/a should satisfyD < /a < 0.6 from Eq. (2.36).

4.2. Method of numerical experiments. We adopt the spectral method for space, and the
Runge-Kutta method for time integration. Range in space is frd to 50 and the number
of mesh is2° = 512 points. Time interval is taken to b@01. We take superposition of two
different traveling wave solutions as the initial value and calculate their time evolution. These
two solitary waves are put with sufficient distance at0. Then we fix the value aofr asl, and
examine the time evolution with different valuesf®f The values of characteristic parameters
of the traveling wave solutions are given y= 0.55andV = 0.1 for one wavew = 0.0075
andV = —2.0for another wave, respectively. Hereafter we call the former solitary wave pulse-1
and the latter pulse-2.

4.3. Results.Calculations have been performed until the solitary waves interact 10 times.
We have checked the conserved quantity: /[U \de during the calculation as a measure of
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reliability. We see that is kept with sufficient accuracy. In fact, fluctuation @fduring the
calculation is at mosha /g ~ 1078, as shown in Table 2.1.

TABLE 2.1. Fluctuation of the conserved quantiky /0.

t pB=0 B = 15 =05625 B=08

42 0 0 16755916945128 108
89 9319609883892& 1010 1.9700283767298 10 ° 1.928779651001% 108
136 19166390124162 102 2.7629271109169 10 ° 2.098469229519% 108
230 39552707787706 109 4.200539849652% 10~ ° 2.3408647116396 108
466 88452799018246 10 ° 7.6076397313715% 10 ° 2.7791032609452 108

Figures 2.2 and 2.3 shows the behavior of solitary waves for the integrablg eafeand
the case of3 = 0.5625=9/16 (m= 1 in Eq. (2.28)), respectively. For smdll, the solitary
waves are stable in interaction. Bsbecomes larger, the change of the shape of solitary waves
becomes large, which is illustrated in Figure 2.4.

Changes of heights of peaks and velocities for solitary waves after 10 times interactions for
different 8 are shown in Figures 2.5 and 2.6, respectively.

Phase shifts in interaction are also observed forfamag shown in Figure 2.7. We note that
the amounts of phase shift are measured by average of 10 times interactions.

Figure 2.8 shows the quantity of ripple after 10 times interactions of solitary waves. Here,
it is measured by the ratio of integrated values of ripple to the conserved quantitye see
that the ripple is quite small for the integrable caggs=(0,0.5), as was expected. But it looks
that it does not differ by the cases that the equation has the conditional Rginterty (filled
circles in Figure 2.8), and other cases (circles in Figure 2.8).

We have mentioned th@t= 0.6 might be a critical point, but it looks that there is no drastic
change in behavior of solitary wavesfat= 0.6.

From these results, we may conclude that solitary waves are stable and behave like solitons
at least for smalp. Difference of behavior between the cases that the GDNLS equation has
the conditional Painléy property and the other cases was not observed in our calculations. In
other words, we may conclude that soliton-like behavior of the solitary waves is the common
property of the GDNLS equations regardless of the paranfiter as far as it is small.

As for the “finite-time integrability,” we could not observe any such phenomenon that im-
plies “finite-time integrability,” e.g., break down of solitary waves in our numerical calculations.
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FIGURE 2.2. Behavior of solitary waves for = 1, 8 = 0.
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FIGURE 2.3. Behavior of solitary waves for = 1, f = 0.5625

19



1.5

t=0
1.0 -
pulse-1
=
0.5 -
pulse—2
0.0 T
-50.0 -25.0 0.0 25.0 50.0
X
1.5
t = 466
1.0 | pulse-1
=
0.5 -
pulse—2
0.0 ‘ ‘
-50.0 -25.0 0.0 25.0 50.0

X

FIGURE 2.4. Behavior of solitary waves for = 1, § = 0.8.
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FIGURE 2.5. Changes of the peaks of pulse-1 and pulse-2 after 10 times interactions.
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FIGURE 2.6. Velocities of solitary waves after 10 times interactions. Circle:
pulse-1, triangle: pulse-2. Initial velocities &rd and—2.0, respectively.

5. Concluding remarks

In this chapter, we have considered the GDNLS equation (2.1), and constructed a traveling
wave solution (2.19) which is valid for any values of parameters. Motivated by the explicit
form of the solution, we have applied the Pairldest to the GDNLS equation, and shown that
it possesses the Pain&yroperty in strict sense only for the known integrable cases, and the
conditional Painleg property for the cases of Eq. (2.36).

Numerical results imply that the traveling wave solution is stable in the interaction and
behaves like a soliton for smal, regardless of the possession of the Paimlproperty. Re-
markable difference in the behavior of solitary waves between integrable and non-integrable
cases was not observed, except that quantity of ripple generated by the interaction of solitary
waves was small for integrable cases, as was expected.

As for the behavior of solitary waves for larg8r we could observe the change of shapes
of solitary waves by the interaction. However, it looks that it is still insufficient to conclude that
the solitary waves are not stable. Further theoretical analysis on stability may be necessary.
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FIGURE 2.7. Quantity of position shift (phase shift) per one interaction. Circle:
pulse-1, triangle: pulse-2.

In conclusion, it is expect that the soliton-like behavior of solitary waves for the GDNLS
equation may be a “robust” property. Such behavior may be observed regardless of the value of
parametef3/a, at least, as far as it is comparably small.
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FIGURE 2.8. Quantity of ripple generated after 10 times interactiofisv.s.
ratio of integrated values of ripple to the conserved quantity. Filled circle: the
cases of Eq. (2.28), circle: other cases.
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CHAPTER 3

An Extension of the Steffensen Iteration and Its Computational
Complexity

1. Introduction

In this chapter, we consider iteration methods for finding a root of a single nonlinear equa-
tion f(x) = 0.

The Newton method is based on a first order approximation of the funé{n The
sequence given by it generically converges locally and quadratically to arrobf (x). There
have been many attempts to accelerate the Newton method. For example, some methods are
designed based on a higher order approximation g€})[ on a composition of the Newton
iteration [66], on a Paé approximation§4, 164, on a modification off (x) in such a way that
the convergence rate is increas2é,[24, and so on.

The Steffensen method?)] is an iteration method which is applied to a nonlinear equation
of the formx = ¢(x). It also has the second order convergence rate, and its iteration function
®(x) has no derivative ofp(x). The Steffensen method can be regarded as a discrete version
of the Newton method. There are so many extensions for the Newton method, however, a few
extension for the Steffensen method. The aim of this chapter is to develop a new iteration
method of the Steffensen type having a higher order convergence rate.

In Section 2, we consider a relationship of the Newton method and the Steffensen method.
In Section 3, we note that the Steffensen iteration functigr) is congruent with the Aitken
transform p]. In Section 4, we introduce thieth Shanks transform7p] which is a natural
extension of the Aitken transform. Whén= 1, the Shanks transform is reduced to the Aitken
transform. In Section 5, we propose an extension of the Steffensen method in terms of the
k-th Shanks transform. In Section 6, it is proved that the extension hakthé)-th order
convergence rate provided thg{a) # 0,+1. Wheng(a) = 0, the iterated sequence has the
(k+2)2%"1-th order convergence rate. In Section 7, some numerical examples are given which
demonstrate the efficacy of the extended Steffensen iteration. For a special case of the Kepler
equation, it is shown that the numbers of mappings are actually decreased by the extended
Steffensen iteration. In Section 8, we state the remarks of this chapter.
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2. The Newton method and the Steffensen method

Let us consider the Newton iteration for the equatid®) = 0. The Newton iteration is
given by

f(Xn)
()
where the initial approximatiory is sufficiently close to a roatr. The functionf(x) should
be inC?-class on an intervdl such thata € 1. If f/(a) # 0 andmax|N’(x)| < 1 onl, then the
sequencep, X1, Xz, . .. converges ta quadratically.

To introduce the Steffensen iteratior?], we consider the equation= ¢(x) by setting

Xnr1 = N(Xn) 1= Xn n=0,1,..., (3.1)

@(X) :=x+ f(x). (3.2)
We prepare the sequen{yg } generated by the simple iteration

Yi+1=@(j), j=0,1,.... (3.3)

If the sequencgy; } converges to a number, then it follows froma = ¢(a) thatf (a) =0. The
contraction principle guarantees the convergence providedrtaadfy (x)| < 1. Furthermore,
the convergence rate of the sequefigg is linear if ¢/ (a) # 0. Let us call suchp(x) the simple
iteration function.

The Steffensen iteratiaa an iteration method for finding a root of the nonlinear equation
of the formx = ¢(x). There isno derivativein the Steffensen iteration function. Let us define
the recurrence formula

2
(Go(xn) —Xn>

P(P(%n)) — 20(Xn) +Xn’
where@(x) is defined by (3.2). Her®(x) is the iteration function of the Steffensen iteration
which generates the sequengexy, Xz, . ... If X, — a asn — o, thena is a root ofx = @(x).
Even if the sequencgy;j} given by the simple iteration (3.3) diverges, the Steffensen iteration
(3.4) may converge tor more faster than does linear order method provided ¢tia} is in
Cl-class,xp € | and ¢/(a) # 1. Especially, if@(x) is in C?-class, the rate iguadratig or

Xnt1 = P(Xp) :=Xn —

n=0,1,..., (3.4)

equivalently, of the second order. The conditimax|¢/(x)| < 1 is not necessary in this case
[66, pp. 241-246]. Furthermore, a global convergence theorem is givéd,ipp. 90-95]. See
for an abstract form of the Steffensen iteratié][ An extension of the Steffensen iteration for
systems of nonlinear equations is proposedin) p. 116] and a local convergence theorem is
shown in B3).
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The Steffensen iteration has its origin in a linear interpolation formuld (j. Let us
briefly review this geometrical feature. A roatof f(x) = 0 is the intersection point of the
curvey = f(x) and thex-axis inxy-plain (see Figure 3.1). We consider the line through the two
points(ag, f(ag)) and(ay, f(a1)) on the curve. Herey is defined by

a; = ¢(ap). (3.5)

The intersection pointr of the line and the-axis gives an approximation of. It follows from
a) —ap = f(ap) that

2
_ fla) ((20) ~a0)
D=0 @) - fag) 0 p(g(a0)) — 29(a0) L a0 (36
a; —ag

Thus this approximation formula gives rise to the Steffensen iteration function (3.4). Let us set
h:=a; — ap. Taking the limit that the line approaches to the tangential lin@atf (ap)), i.e.,
a; — ag, we derive

— f (ao) f (ao)
a=ag— Flaoth) — F(ao) — ao_f’(ao) as h—0. (3.7)
h

In this limit, a goes to the estimation af by the Newton method (3.1). Thus we can regard the
Steffensen iteration asdiscrete version of the Newton methdthis leads us to believe that an
acceleration of the Steffensen iteration is a meaningful problem.

y

FIGURE 3.1. Graphical explanation of the Steffensen iteration
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3. The Steffensen method and the Aitken transform

Let us introduce the Aitken transfornd][ It is a sequence transform to accelerate the
convergence of a given sequer{gg}. The Aitken transform is given by

. )2
Yi+2 —2Yj+1+Yj

j=0,12,.... (3.8)

If the sequencgy; } converges to a finite limif.,, then the sequendg; } converges to the same
limit y, faster thar{y; }. In general (cf. 10, pp. 1-2]), we consider some sequentsg, {T;},
and a sequence transform such thass; — T;. If the sequence§S;} and{T;} converge to the
same limita and satisfy the condition

. Tj—a
lim

lim & —5 =0, (3.9)

then the sequence transfois calledsequence convergence accelerator
The Steffensen iteration functioh(x,) is equivalent to the Aitken transform of the three
numbers<, (x,) and@(@(x)). Namely, we have

- (Y1—Y0)?
CD Xn) = = e E— = s = X 5 = 310
(Xn) = Yo :=Yo o2y tye YoTXm oW (%),  Y2=@(@(xa)) (3.10)
for eachn = 0,1,.... It should be noted that the sequengg} accelerated by the Aitken

transform is different from the sequenf®,} generated by the Steffensen iteration (3.4). We
can find thatx,,1 = yp andXy.2 # y1 in general, even ik, = yp. In order to use the Aitken
acceleration, we must prepare the whole sequggge Moreover, if the convergence rate of
{y;} is linear, then the convergence rate{gi} is so (cf. ]). The Aitken acceleration only
guarantees that the sequer{gg} converges faster thajy;} does in general. This property is
in sharp contrast to the Steffensen iteration.

4. The Shanks transform and thees-algorithm

Thek-th Shanks transforrfi7Q] is a natural extension of the Aitken transform. It is defined
by a ratio of Hankel determinants 2k + 1 numbersyj, ...,y o by

(1)
ex(yj) ::AL. j=0,12,.... (3.11)
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Here we define the numerat.ej;j) as a Hankel determinant gf, ..., yj. o« by

1
| Yi Yi+1 - Yj+k
At(<j) - yj‘+1 YJ.+2 YJ+.k+1 7 (3.12)
Yi+k Yj+k+1 - Yj+2k
and the denominat(BI((j) as a Hankel determinant 8fy;, ..., A%y 2 by
X
| 22y My o Biaca
O e e | (3.13)
AZYHk—l A2ijrk A2yj+2k72
whereA is the forward difference operator such that
DY) =Yit1-Yj, DY) =Yji2— 2Yjs1tY)- (3.14)

Whenk = 1, the Shanks transform is reduced to the Aitken transformation (3.8). Computation
of determinants usually needs a plenty of multiplications and additions. In order to decrease
the amount of the computations and to avoid the cancellation in the calculation of the Hankel
determinants, we make usetbk g-algorithm[85], [9, pp. 40-51]. The sequendex(y;)|j =
0,1,...} of the Shanks transform is determined directly by the recurrence relation

ell=0, &=y, i=012..., (3.15)
i j+1 1 : .
si(+)1:si(_1)+m, i—012..., i=01,2..., (3.16)
& —§
through
alyj) = &5, i=01,.... (3.17)

The amount of computations (3.16) to gety;) is only k(2k+2n+1). It should be remarked
that thes-algorithm has a numericatability.

5. An extension of the Steffensen iteration

The Shanks transform is originally a sequence convergence accelerator for a given sequence.
We apply the Shanks transform to define an iteration function, where the seg{ighce
replaced by that of the simple iterations (3.3). kgbe an initial approximation of a roet of a
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nonlinear equatior = ¢(x). For a fixed natural numbdg we introduce the following iteration
function

Xnt1 = Pu(Xp) := g\%, n=0,12,.... (3.18)
Here we define(x) andBy(x) as
®w(X) @(X) (%)
Ad) i x) @(x) _‘”‘“(X) | (3.19)
@(X) @+1(X) @k<X>
@) S@x) - Pgca(X)
B(x) = §2¢1(X) ézcoz(X) a §2cn<(><) (3.20)
52@_1(x) 52@<x) 52@k_z(x)

The numbe,;1 becomes a new starting value for the next iteration. Hg(®) and 2¢; (x)
are compositions of the simple iteration functi@(x) and their linear combinations defined by

i

R )
(R)(X) =X, (pl<x) = (p((p<(p(x)))v J :172737"'72k7 (321)
52(pj (X> = Q)j+2<X)—2q’j+1(X)+(pj<X), J :O7 17"'72k_25 (322)

respectively. If a denominator in the formula (3.18) happens to be zero, we.set X,.
Especially,®,(x) is just the Steffensen iteration function (3.4). Let us call (3th8)extended
Steffensen iteration

6. Convergence rate of the extended Steffensen iteration

We now consider the convergence rate of the extended Steffensen iteration (3.18). The main
results in this chapter are as follows.

THEOREM 3.1 If ¢(x) is in C**1-class and@/(a) # 0,41, then the extended Steffensen
iteration has the(k 4 1)-th order convergence rate. Namelyn, 1 — a| < C|x, — a|<*1 for
some constar(.

Proof. Without loss of generality we can assume= 0 whereaq is a root ofx = @(x). We
shall compute the leading term of the Taylor expansion of the iteration fun®ji¢x) around
x=0.
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Let us perform the following operations to the determinai{), Bx(x). Setting

._ d"p(0) _
C“'_d—x”’ n=12..., (3.23)

we first subtract thé-th row multiplied byc; from the (i + 1)-th row fori = 1,2,.... On the
next step, we subtract theth row multiplied byc;? from the(i + 1)-th row fori = 2,3,.... We

do the similar operations recursively. Then we can express the Hankel determinants (3.19) and
(3.20) as

a1,0(X) ar1(x) - agk(x)
ap 1(X ano(X A X
Ac(X) = 271:< ) 2’2:( ) ) Z*kfl( ) : (3.24)
A1 k(X)) Akrrikrr(X) o Agr,k(X)
bio(X) bra(X) -+ brk-1(X)
bo1(X)  boo(X) -+ bok(X
B —| 2 Pl b (3.25)
bek-1(X) bk(X) -+ brok—2(X)
Here we definen, j(x) andbmj(x) as
agj(x) ;== @ (x), j=0,1,...,2k, (3.26)
am+1,j(X) :=amj(x) —c1"amj-1(x), m=1,2,... Kk, j=mm+1,... 2k, (3.27)
by j(X) := 6%¢;(X), j=0,1,...,2k—2, (3.28)
bmi1,j(X) i=bmj(X) —ciMbmj_1(x), m=1,2,....k—1, j=mm+1,....2k—2. (3.29)

First we consider the Steffensen case whetel. By the Taylor expansion d%;(x) we see

1
ag0(X) = X, ag1(X) = C1 X+ 502x2+~-, (3.30)
1 1
ap1(X) = ECZX2+ . ap2(X) = 501202x2+ . (3.31)
Obviously, we have
1
Aq(X) = 501(01—1)02X3+'”, (3.32)
20, 1, 2 2
B1(X) = (c1 —1)“x+ 5(01 +C1—2)CX+---. (3.33)

It follows from the conditiorc; # 0, 1 that®;(x) = O(x?) asx — 0. This proves the quadratic
convergence.
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Next we show thathy(x) = O(x*+1) for any natural numbek. The functionsam j(x) take
the form

m-1 )
am,j<x>:<m<x>+_;Bf%_mx), B =(-1)" Y oPPrRL (3.34)

O<pr<---<pi<m
This can be checked by using the recurrence relation (3.27). We considetttteeder deriva-
tive of the compositiorp; (x) = @_1(@(x)), which is expressed as

dn(Pj(X) . dr(pj*l((p) z C(q;]_,...,qr)dqu)(X) B er(p(X) (3.35)

dx :r; do' o Ly A

qp>--2>0r >0

forn=1,2,.... HereC(qy,...,qr) are unique constants. We define the constaids, gy, .. .)
forg € {0,1,2,...},i=1,2,..., as follows:

(i) C(dy,.--,qj,0) =C(qy,...,qj),
(i) C(...,q,...,qj,...) =0if g < qj,
(i) C(1) =1,

(

C Qla--er) - ZKC(qla"'aqiqui —17Qi+1a---,Qr) If ql’ >01

1=
wherek is the number of the non-negative integers having the same valups-dsin the set

{q17 ce 7qi717 Qi - 17 Qi+17 LR CIr}, name|y,
K:=#{n=qg—-1lne{q,....q-1,0 —1,G1,...,0r} }. (3.36)

By use of (3.35) an€(1,...,1) =1, we write(pj(”)(O) :=d"¢;(0)/dx" as

n—-1
d" 0 =c"g” 0+ Y ¥g"0), ¥V i= T Clan....0)ceCe G- (337)
r=1

O+ Far=n
qp>>0r>0

Using (3.34) and (3.37), we see faﬁ[;)j (0) :=d"am,j(0)/dx" as follows:
(0 M (g) 1 & M 0
am;(0) =9 "(0)+ Zl B ¢(0)
1=

(n) "m0 o a(m) (n) &m0
=a"9g 0+ Y v 0+ > B (clnqojil(OHZvr ¢ 5_1(0)

r= i= r=1
m—1 n—-1 m-1
— " (qof2>1<o>+ zlﬁ.<m>cofi>l_.<o>> + 3 WY (cpf?l(o>+ ziﬁ.““%o,@l_.(m)
i= r=1 1=
(n) "))
=C nan’]J 100+ > v ay;_1(0) (3.38)

32



We insert (3.38) into the-th order derivative of (3.27) to derive

i (0) = (" -l L0+ 3 73,40 3.39)
=
Assume thabiy, j(X) = O(x™), namely,
ali(0)=0, for n<m, (3.40)
aﬁ,:)j (0)#0, for n=m. (3.41)

The right hand side of (3.39) is equal@dfor n < m. While al(ﬂ“rfj)(O) is not equal td when
c1 # 0,1. Then it follows that

ar(xTJ)rl,j (0)=0, for n<m+1, (3.42)
a,(]:'l“ (0)#0, for n=m+1 (3.43)

This implies thatam; 1 j(X) = O(x™1). By induction we find thaem j(x) = O(x™) for any
natural numbem. Therefore, the Taylor expansionaf, j(x) is given by

3 (x) = & (0) XM+ . (3.44)
On the other hand, we can easily find that
bmj = amj+2 —28mj+1+amj, m=12,...,k, j=m=1m,....2k—2 (3.45)

from the definition (3.29). Then we obtain

biy; (0) =0, for n<m, (3.46)
b7, (0) = (1™ — 1)%a) (0) # 0, for n=m (3.47)

b j () = b (0) XM+ - . (3.48)

for any natural numbem.
Finally we consider the determinamg(x) andBy(x). Let S, be the set of permutations
o= ( 0 1 - n-l ) of n-items. By virtue of (3.24), (3.25), (3.44) and (3.48), we see

ip i1 - ina
A(X) = ; Sgna‘al,ioaz,1+i1"'ak+l,k+ik:LX(k+1)(k+2)/2+"', (3.49)
0€3+1
Bk(X) = ésgna- baigb2.1 i, bk 1pi, , = MXKEED/2 (3.50)
oc
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Here we define constahtas

1 1 1
a0  ap(0) ay(0)
2 2
| #1000 a0 o a0 351
(k+1) (k+1 1
ak+1 .(0) ak+1 |Z+1<O> o al(<+1,%k(0>
andM as
1 1 1
050 b3(0) - by ,(0)
2 2
y_ | B0 B30 - bR(0) 352
N . o
b 1(0) BEGO) - B 5(0)
This means thaby(x) = O(x**1). The extended Steffensen iteration defined bykttie Shanks
transform has thék+ 1)-th order convergence rate. o

In Theorem 3.1, we use the sequence generated by the simple iteration (3.3) with the itera-
tion function (3.2). In the remaining part of this section, we replace the iteration function (3.2)
by the Newton iteration function (3.1). To this end, let us set the funatiog) in (3.18) as
() := N(x) = x— f(x)/f/(x). If f(x) is in C?-class on the intervaland satisfyf’(a) # 0 and
f”(a) # 0, then the functiorp(x) satisfiesp/(a) = 0and@’(a) # 0 and the Newton iteration
{Y¥j+1 = o(y;)} locally converges tar quadratically. We have

THEOREM 3.2 If @(x) is in C*+22 " class andy/(a) = 0, ¢ (a) # 0, then the extended
Steffensen iteration has tlile+ 2)2<~1-th order convergence rate. Namelly, 1 — a| < C|xn—
a|k+227" for some constar.

Proof. We restrict ourselves to the case whare- O, for simplicity. Along the line which
is similar to Theorem 3.1, we shall compute the Taylor coefﬁci@ﬁ?é(O) of ¢(x). From
(3.37) and the conditions, = 0, ¢, # 0, it is turned out that

¢"(0 =0, for n<2-1 (3-53)
(p.(“)(O) #0, for n=2. (3.54)

Then we findg; (x) = O(x?') andd2g;(X) = O(x2'). We consider the Hankel determinant
A(X) = ; SANO - Po Prtiy Po+ip Pty - (3.55)
gc
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The leading term of\(x) is given by the termp, @14, - - - Qevi, = O(x2i°+"'+2k+i") which has
the minimal degree ix. The degree becomes minimal whign=k, i =k—1, i,=k-2,...,
iy =0. It follows thatAg(x) = O(xk+12). Similarly, Bc(x) = O(x2*). Consequently, we see
Py (x) = O(x*+22 ") which completes the proof of Theorem 3.2. O

In the book of Ostrowskig6, p. 252] a composition of the Newton iterations is formulated
which has third-order convergence. The iteration in Theorem 3.2 kvthl provides third-
order convergence. The extended Steffensen iteration in this case is also a composition of the
Newton iterations, however, it is rather different from that6e][

7. Numerical examples and computational complexity

In this section we present explicit examples to demonstrate how the extended Steffensen
iteration acts. The computational complexity is also discussed.

All results of the numerical experiments are computed on the Intel Pentium Pro Processor
200 MHz. In Example 1 and 2, we examine the new iteration methods by use of the Mathe-
matica version 3 (Wolfram Research, Inc.). In Example 3, we program them by the GNU C
compiler version 2.7.2.

Example 1. The nonlinear equation to be solved is
f(x) = exp(—x) —x =0, (3.56)

which has the unique solutiom = 0.56714329040978104129. In order to apply Theorem
3.1, we set the iteration functiap(x) as

O(X) = exp(—X). (3.57)

It should be noted thap/(a) # 0,+1 and ¢(x) satisfies the condition of Theorem 3.1. We
compare several iteration methods. They are the simple iteration (3.3), the Steffensen itera-
tion (3.4), and the extended Steffensen iteration (3.18) Wwith2,3,4. We choose the initial
approximation agp = 0, and generate the sequer{eg} until the condition

1f(X)| <107, r=1000 (3.58)

is satisfied. Thex,« gives an approximation of the solutiean We compute the sequences in

the multi precision arithmetic. In Figure 3.2, the quantity, | f (xn)| is illustrated to estimate

the error. In Table 3.1, we give the numlmgrof iterations and an estimation of the convergence
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rate,

(3.59)

by using four numbers, 3, Xy 2, X+ 1 andXp-.

It is shown that the iteration numbenms crucially depend on the iteration methods. On the
convergence rate in Table 3.1, the estimated values are very close to the theoretical values for
all iterations.

Example 2. Let us consider the same equatibfx) = exp(—x) —x = 0 as in Example 1.
We here replace the iteration functigix) by the Newton iteration function

exp(—X) — X

P =XF X 1

(3.60)

Obviously,¢'(a) =0, ¢’ (a) # 0. Namely,@(x) holds the condition in Theorem 3.2. Set the
initial approximation asp = 0. The sequences are computed in the multi precision arithmetic.

In Figure 3.3 and Table 3.2, the Newton method (3.1) and the extended Steffensen iteration
(3.18) withk = 1,2,3,4 are illustrated. The estimated convergence rates seem to be good ap-
proximations of the theoretical rates.

Example 3. To discuss the computational complexity and the convergence property we
solve the Kepler equation

f(x) :=x—1—esin(x) =0 (3.61)

TABLE 3.1. Number of iterations and convergence rate. (Example 1)

. ) convergence rate
numbem* of iterations : .
numerical| theoretical

simple iteration 4059 1.00 1
Steffensen iteration 10 2.00 2
extended Steffensen iteratido= 2 7 3.00 3
extended Steffensen iteratido= 3 5 4.00 4
extended Steffensen iteratido= 4 4 5.00 5

T This value is obtained by, 1,Xi12 andxy- fori = 10,11, ...,4045 Fori > 4045 the estimation of
the convergence rate is quite different from 1.00.
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FIGURE 3.2. A comparison oflog;q|f(X,)| of several iteration methods when
¢'(a) #0,+1. (Example 1) Solid line: simple iteration. Dashed line: Stef-

fensen iteration. Circles, squares and triangles denote the extended Steffensen
iteration fork = 2,3, and4, respectively.
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FIGURE 3.3. A comparison oflog,o|f (X,)| of several iteration methods when
¢(a) =0, ¢'(a) #0. (Example 2) Dashed line: Newton method. Pluses,

circles, squares and triangles denote the extended Steffensen iteratloa: for
1,2,3, and4, respectively.
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for variousl ande, by using the simple iteration, the Newton method, the Steffensen iteration
and the extended Steffensen iteration wita 2. The Kepler equation appears in orbit deter-
mination in celestial mechanics amdl ande are the eccentric anomaly, the mean anomaly
and the eccentricity, respectively. We solve the Kepler equatior, fwhere the remaining pa-
rameterd ande are fixed suchthad <| <, 0 < e<1. Letxy=1 be the initial value. Let

us setp(x) := 1 + esin(x) and insertp(X) into the iteration functions of the Steffensen and the
extended Steffensen iterations. We e, )| < 10713 as the stopping criterion in the double

precision arithmetic.

We first show the convergence property of the iterations. The simple iteration always con-
verges for any pair of ande. The marks in Figures 3.4, 3.5, and 3.6, indicate the g&ie
for which the iterations do not converge. The mesh sizésoflein the figures ar€@.01r7/180
and0.001, respectively. We see that the Steffensen type iterations converges in more cases than
the Newton method. There are some parameters for which the Steffensen iteration converge but

TABLE 3.2. Number of iterations and convergence rate. (Example 2)

. ) convergence rate
numbem* of iterations . .
numerical| theoretical
Newton method 11 2.00 2
extended Steffensen iteratido= 1 7 3.00 3
extended Steffensen iteratido= 2 4 8.00 8
extended Steffensen iteratido= 3 3 20.04 20
extended Steffensen iteratido= 4 2 —1 48

T Sincexy-_3 dose not exist, it is impossible to estimate the convergence rate.

TABLE 3.3. Number of iterations and total numbers of mappings. (Example 3)

numbem* of iterations total numbers of mappings
average maximal| | = 3T | average maximal| | = 387

e=0.95 e=0.95
simple iteration | 4594 2903 33 45,94 2903 33
Newton method | 10.18 886 30 20.36 1772 60
Steffensen iteration 3.88 30 30 7.76 60 60
extended Steffensen 3.87 632 7 1548 2528 28

iteration,k = 2
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the extended Steffensen iteration does not. The ratios of the number of all grid points to that of
the marks in Figures 3.4, 3.5, and 3.6 are 0.06400% (Newton method), 0.02732% (Steffensen
iteration) and 0.03536% (the extended Steffensen iterations), respectively.
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FIGURE 3.4. The parameterd, e) for which the Newton iterations do not con-
verge. (Example 3)
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FIGURE 3.5. The parameterél,e) for which the Steffensen iterations do not
converge. (Example 3)
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Next, we illustrate the computational complexity with Table 3.3. We solve the Kepler
equation for all parameter$,e) such that =im/180 i =0,1,...,180ande= 0.01j, j =
1,2,...,100. The maximal and averaged numbers of iterations of each iteration method are
shown in Table 3.3. The amount of computations ofdkagorithm in the extended Steffensen
iteration is negligible as compared with that of the mappngd husthe total numbers of map-
pingsare essential as well as the numbers of iterations in order to estimate the computational
complexity. The simple iteration, the Newton method, the Steffensen iteration and the extended
Steffensen iteratiork(= 2), respectively, needs 1, 2, 2 and 4 mappings in one iteration. The to-
tal numbers of mappings are also shown in Table 3.3. The averaged and maximal total numbers
of mappings of the Steffensen iteration is less than those of any other methods. However, the
Steffensen iteration is the worst whee- 1811/180, e = 0.95. While the extended Steffensen
iteration works well. For these special parameters, the extended Steffensen iteration is superior
than other iterations.

8. Concluding remarks

In this chapter, we consider an extension of the Steffensen iteration in terms of the Shanks
transform. The resulting iteration method does not need any derivatives and has a higher or-
der convergence rate. {fp(y;)} converges linearly, then the sequer{®®(x,)} defined by
using thek-th Shanks transform has tiike+ 1)-th order convergence rate (see Theorem 3.1).
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FIGURE 3.6. The parameterd, e) for which the extended Steffensen iterations
for k =2 do not converge. (Example 3)
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Here ®(x) is just the Steffensen iteration function. On the other handify;)} converges
quadratically, like the Newton sequence, then the iterated seqyen¢e,)} has remarkably
the (k+ 2)2k‘1-th order convergence rate (see Theorem 3.2). These theoretical convergence
rates can be found in numerical examples (Examples 1, 2).

For the implementation of the extended Steffensen iteration, the statdprithm is espe-
cially useful to decrease the amount of computations in the calculation of Hankel determinants.
Consequently, the numbers of mappings take a major part of the computational complexity. It
is shown (Example 3) that the extended Steffensen iterationkwitt2 has the minimal num-
bers of mappings in a special case of the Kepler equation. Moreover, the extended Steffensen
iteration converges for more cases of parameters than the Newton method.

After the completion of this research the authors are told the refereb@g$48] by Pro-
fessor N. Osada, which considers a generalized Steffensen iteration without any discussion on
computational complexity. The idea idg] is essentially the same as that in this thesis, however,
there is no explicit numerical examples and no comparison to other iteration methods.
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CHAPTER 4

Determinantal Solutions for Solvable Chaotic Systems and Iteration
Methods Having Higher Order Convergence Rates

1. Introduction

The singularity confinement (SC) is a useful integrability criterion for discrete nonlinear
dynamical systems2f]. The discrete Painl@&equations and many discrete soliton equations
pass the SC test. However the SC test is not sufficient to identify integrability. In the literature
[28], Hietarinta and Viallet presented a discrete dynamical system which passes the SC test but
possesses a numerically chaotic property. Then they proposed a more sensitive integrability test
[28, § using the algebraic entropy. The algebraic entropy is defined by the logarithmic average
of a growth of degrees of iterations. Both test are similar to each, and the algebraic entropy test
is a more precise criterion than the SC test.

Many of good numerical algorithms are deeply connected to the nonlinear integrable sys-
tems. For example, the recurrence relation of the gd-algorithm, which is used for calculating
a continued fraction, is equivalent to the discrete time Toda equation. And the recurrence rela-
tion of the g-algorithm B5], which is a sequence convergence accelerator, is equivalent to the
discrete potential KdV equation. From these results, one may conjecture that good numerical
algorithms can be regared as integrable dynamical systems. Indeed, many of linearly convergent
algorithms such as eigenvalue algorithms and sequence accelerators pass the SC type criteria
(cf. [68]), and they are proved to be equivalent to soliton equations. However, the algorithms
having higher order convergence rates, which give irreversible dynamical systems, do not pass
the SC type criteria. The techniques in the nonlinear integrable systems cannot be directly
adapted to them.

The arithmetic-harmonic mean (AHM) algorithr6?] is an irreversible system having an
explicit solution, however does not pass the SC type criteria. According to the setting of initial
conditions, it behaves as an algorithm having the second order convergence rate, or as a solvable
chaotic system. In this chapter, we investigate such discrete dynamical systems and obtain their
determinantal solutions. We deal with the Ulam-von Neumann (UvN) sysi&mwhich is
a solvable chaotic system, and with the discrete dynamical systems derived from the Newton
method, an extension of the Newton method, the Steffensen mef2hdahd the extended
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Steffensen method proposed in Chapter 3, which are iteration methods having higher order
convergence rates.

In Section 2, we show the trigonometric solutions for the AHM algorithm and the UvN
system in terms of addition formulas. Moreover we show the hierarchy of the UvVN system.
The AHM algorithm is equivalent to the Newton method for a quadratic equation. In Section
3, we introduce the Newton method and the Nourein metbdd 1g which is an extension of
the Newton method. Applying these methods to a quadratic equation, we present the hierarchy
of the Newton type iterations. In Section 4, we give addition formulas of the determinants of
certain tridiagonal matrices. In Section 5, we show determinantal solutions for the discrete Ric-
cati equation. In Section 6, we obtain determinantal solutions for the hierarchy of the Newton
type iterations. In Section 7, determinantal solutions for the hierarchy of the UvN system are
derived. In Section 8, we obtain determinantal solutions for the hierarchy of the Steffensen type
iterations. In Section 9, we give some remarks.

2. Trigonometric solutions for solvable chaos systems

In this section, we introduce solvable chaotic systems which have trigonometric solutions.
We shall show that these solutions are obtained in terms of some addition formulas.
Firstly, we consider the iteration

an"— bn Zanbn
— ) b = >
ant+1 5 n+1 an 1 by

n=0,12,..., (4.1)

which is called the arithmetic-harmonic mean (AHM) algoritt8g][ The AHM algorithm has
the following solutions. For the casg > by > 0, we have

an = Npcoth(2"ay) bn = Nitanh(2"gy) . 4.2)
For the caseg > 0, bg < 0, we have
an = Nacot(2"03) , bnh = —Nztan(2"o2) . (4.3)

Here the positive constanig, N, 01 and o, are uniquely determined by the initial valuas
andbg. The solutions (4.2) and (4.3) are derived from the double angle formutagigk) and
cot(x),

coth(2x) = coth(x) Jgtanr(x) , tanh(2x) = foif(tgﬁtg;ﬁf) ) (4.4)
Cot(2x) = w tan(2x) = % (4.5)
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respectively. The AHM algorithm has the conserved quantitya,b,, which can be easily
checked by (4.1). Thus= aghp. Using the conserved quantitywe introduce the variable,
such thau, = a, = | /by. Then we have the discrete dynamical system

1 I
The system (4.6) can be also derived by applying the Newton method to the quadratic equation
f(z) = 2 —1 = 0. The behaviors ofi, are illustrated in Figures 4.1 and 4.2. When the

casel = aghp > 0, the sequence, quadratically converges to the positive root ¢éee Figure

1

FIGURE 4.1. Behavior of the Newton method (4.6) for the cése aghby > 0.

T T T T T T T T T

0 20 40 60 80 100

FIGURE 4.2. Behavior of the Newton method (4.6) for the cése agbg < 0.
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4.1). When the caske= agbg < 0, it behaves as a solvable chaotic system (see Figure 4.2). Its
invariant measure ig(dx) = dx/((1+ x?)), and its Lyapunov exponentlisg 2 (cf. [79]).
Next, we consider the solvable logistic map, or the Ulam-von Neumann (UvN) syg#&m [

O<u<1, Unt1 = 4un(1—up), n=0,12,.... 4.7)
A solution for (4.7) is obtained by
Up = sir?(2"a3) (4.8)
which is derived from the double angle formulasif?(x),
sir?(2x) = 4sirf(x)(1—sirf(x)). (4.9)

Here the constanti; is determined by the initial valuey. The invariant measure of the UvN
system isu(dx) = dx/(1/x(1—x)), and the Lyapunov exponent of it isg2 (cf. [79]). By
virtue of then-tuple angle formulas of trigonometric functions, the higher order systems of the
UvN system are given by

u? = 4uP 1 -u?), (4.10)
ud =¥ (3-4ud)?, (4.11)
= 1603 (1 ut)(1-2u)?, (4.12)
u®, = uP (5—4u (5-4ud))?, (4.13)

and so on (cf.80]). The superscriptsof uﬁm) denote the order of the hierarchy. Their invariant

measures are all(dx) = dx/(11/x(1—x)), and their Lyapunov exponents are respectively
logmform=3,4,5,.... Another generalization of the UvN system having Jacobi or Weierstrass
elliptic function solution is discussed i@ §].

An aim of this chapter is to obtain determinantal solutions for the discrete dynamical sys-
tems (4.6), (4.7) and their hierarchies. The hierarchy of (4.6) is introduced in Section 3, and the
hierarchy of (4.7) already appear above.

3. The Newton method and the Nourein method

In this section, we introduce the Newton method (&f3]] and an extension of the Newton
method for finding a root of an equatici{z) = 0. Furthermore we present a hierarchy of
discrete dynamical systems given by the Newton type iterations.
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The Newton method is given by

Un+1 = N(up), n=0,12,..., (4.14)

N(z) =z— :/((ZZ)> : (4.15)

Here the prime denotefs(z) = d f(x) /dz The Nourein methodd4, 16, which is an extension
of the Newton method based on the Pagproximation, is given by

Unt+1 = Np(Un) , n=0,12,..., (4.16)
Hp(2)
No(z) = z— f(z)—2L (4.17)
p(2) ( )Hpﬂ(z)
whereHp(z) are defined by
C1 Co 0 o --- 0
(o) C1 Co o --- 0
Ho(2) =1, Hpo(z2) = : : : : e, p=123,..., (4.18)
Cp-1 Cp-2 Cp—3 Cp4g -~ Co
Cp Cp_]_ Cp_2 Cp_3 R C]_
andcj(z) denote
1dif(2) :
Cj(z) = J—I EB =012 .... (4.19)

The convergence rate of the Nourein method is of opler2. Whenp =0, 1, and?2, then the
Nourein method (4.16) is reduced to the Newton method, the Halley method9cpfd. 220—
221], [64]), and the Kiss method (cf6H]), respectively.

Applying the Newton method (4.14) and the Nourein method (4.16) to the quadratic equa-
tion

f(z):=2+2bz+c=0, (4.20)

we obtain the following discrete dynamical systemsget 0,1,2,.. .,

2)\2
2 (uwm’)*—c
ud, =\t ) T (4.21)
" 2uP 120
@ U3 —3cu® — 2bc 4.99
i1z o 3 ! (4.22)
3(un’)2+6bu,’ + (4b%—c)
(D4 (D2 4) _ an2 _
Ugfil: (un”)*—6¢c(un”) sbcu; (4b“—c)c (4.23)

43+ 120 (uf)2 + 4(4b2 — o)) + 4b(202 —c)
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and so on. The superscripts.= p+ 2 of U|(1m) denote the order of the hierarchy. In Section 6,
we shall obtain determinantal solutions for the hierarchy of the discrete systems (4.21)—(4.23).

4. Addition formula for tridiagonal determinant

In order to get solutions for the discrete dynamical systems corresponding to iteration meth-
ods and solvable chaotic systems, we derive an addition formula for tridiagonal determinants,
which is an extension of addition formula for trigopnometric function.

In this section, we present four lemmas for determinants. Let us consider the sequence of
determinants of tridiagonal matrices,

e n=123..., (4.24)

wherea andf are arbitrary complex constants. We sef := 0 andtp := 1. It should be noted
thatt, is a monic polynomial ofr of degreen. We can prove the following elementary lemmas.

LEMMA 4.1 (Three-term recurrence relation)
T_1=0, To=1, Thi1=0aTn—LBTh1, n=0,12,.... (4.25)

Proof. In terms of the expansion of the determinagt; with respect to the last row, we
derive (4.25). )
Here let us assume thatis a real positive constant. Setting

Tn Th—2

a
Xi=——, To(X) :=1, Th(X) := — , n=212..., 4.26
2\/E 0( ) n( ) 2 /—Bn 2 /—Bn_z ( )
we obtain the recurrence relation
To(x) =1, Ti(X) =X, Tnr1(X) = 2XTa(X) — Th—1(X), n=12,..., (4.27)

from (4.25). The function3,(x) are the Chebyshev polynomials of the first kind. The Cheby-
shev polynomials can be also expressed as

Tn(X) := cos(n arccogx)) . (4.28)

Thus the determinants, can be related to the trigonometric functions.
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LEMMA 4.2 (Addition formula)
Tnem= TnTm— B Th-1Tm-1, nm=201,.... (4.29)

Proof. Formula (4.29) is a consequence of the Laplace expansior/(df.fpr the deter-
minantt, ., with respect to the first rows. We give an alternative proof here. Let us assume
thatt, # 0. From a determinant partitioning formula for block matrices, it follows that

1 A
a B a f
1
1 a . 1 a .
Tn+m = Tn . . - . . m‘
1 «a 1
B )
(4.30)
We then have
a—LBt-1/Tn B
1 a .
TrH.m - Tn . . . (431)
1 «a
Expanding the first row, we obtain
Tnim = Tn(0Tm-1—BTm2) — BTn-1Tm-1. (4.32)
Using Lemma 4.1, we derive (4.29). We have proved Lemma 4.2. O
LEMMA 4.3 (Linear-bilinear identity)
2TmTn — Tm-1Tny1— TmiaTno1
=B"(2tm-n— QA Tm-n_1), m>n, n=0,12,.... (4.33)
Proof. From Lemma 4.2, it follows that
2TmTn — Tm-1Tn+1 — Tme1Tn-1 = B(2Tm-1Th—-1 — Tm—2Tn — TmTh—2) - (4.34)

Note that the indices of the right hand side of this relation are decreaskddliyer than those
of the left hand side. Calculating this relation recursively, we have

2TmTn— Tm-1Tn+1 — Tms1Tn-1 = B"(2Tm-nTo— Tm-n-1T1 — Tm-n+1T-1) - (4.35)

Fromt_1 =0, 1o = 0andt; = a, this relation becomes to (4.33). We have proved Lemma 4.3.
m|
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LEMMA 4.4 (Differential relation) If B8 is independent odt, then
OTni2 0Ty

da " da

If o and 3 depend on the same parametehen

=(N+2)Thy1, n=0,1,.... (4.36)

o7 o1 Ja 0
ant+2_ d_;:<n+2)ﬁrn+l_(n+1)a—€rm n=0,1,.... (4.37)

Proof. A partial differentiation with respeat leads to

ot n+1
(;;2 —~ _Z)r,- Tni1 - (4.38)
=
From Lemma 4.2, it follows that
6Tn+2 n n—1
a (N+2)T 1+ z Tj—1Tn—j = (N+2)Tpp1+ B Zorj Tno1—j- (4.39)
=1 i=
From (4.38), we obtain
o7 o7
;;2:(n+2ﬁhﬂf%35§. (4.40)

Thus we have proved (4.36). The relation (4.37) can be proved by a similar line of thought.

5. Determinantal solution for the discrete Riccati equation

In order to get solutions for the discrete dynamical systems corresponding to the Newton
type iterations and the Steffensen type iterations, we give the determinantal solution for the
discrete Riccati equation.

Let us consider the discrete Riccati equation

ax,+b
T Cxatd’
wherex, is a complex variable, and, b, c andd are complex constants. When we set the

n=0,12,..., (4.41)

Xn+1

parameters as
Xxpn=X(t), t=nd, a=1+Bd, b=Cd, c=-Ad, d=1-Bd, (4.42)

and take the limit a® — 0, then we have the differential Riccati equation
dX(t)
dt
with the constant coefficienss, B andC.
A determinantal solution for Eq. (4.41) is obtained by
_ XoTh— (Xod—b) 1y 1
" - (a—xC)Tho1
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= AX(t)?+2BX(t) +C (4.43)

n=0,12,.... (4.44)




Heret, is the determinant of the degraelefined by

n
A

a B
1 a p
1.1=0, =1, Thn= , n=123..., (4.45)

B Q
Q ™

wherea andf denotea =a-+d,  =ad—bc.
From Lemma 4.1, the determinantssatisfy the linear difference equation

1.1=0, T1=1, Tp1—(a+d)n+(ad—bc)r,-1=0, n=0,1,2,.... (4.46)

Substituting (4.44) into (4.41) using (4.46), we check that (4.44) gives a solution.

6. Determinantal solutions for hierarchy of the Newton iteration

In this section, we obtain determinantal solutions for the hierarchy of the Newton type
iterations (4.21)—(4.23). The hierarchy is derived by applying the Newton type methods (4.14),
(4.16) to the quadratic equatidiiz) = 2+ 2bz+c.

6.1. Determinantal solutions. We begin to consider the following discrete Riccati equa-
tion
VoVh—C
T Vot (Vo+2b)’
whereb, c andvg are arbitrary complex values. Note that the initial valgés included in the
coefficients of the recurrence relation. From the determinantal solution for the discrete Riccati
eguation in Section 5, we obtain a solution for (4.47)

Vi1 n=0,1,2,..., (4.47)

n=0,12,.... (4.48)

HereA andB denoteA = f/(vp), B= f(vp), andF, are the determinants defined by

F1=0, F=1 F= e . n=123... (4.49)
1 A B
1 A

Next, we consider addition formulas fag, which are resulted from the following theorem.
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THEOREMA4.1 (Addition formula) The solutionv, (4.48)for Eq.(4.47)satisfies the relation

Vmn-1Vh—-1—°C
V, = mn=123,.... 4.50
(m+1)n—1 erF1+Vn71+2b’ y ) &9 ( )

This relation gives thertuple addition formulas
melz Nmfz(anl), m= 2,3,4,... y n:O, :I.7 2, 5 (4.51)

where we define functiomé,(z) by

No(2) = z— f(2) HHpii?z) . p=012.... (4.52)
P
"2 1@
1 (20 f(2
Ho(z) :=1, Hp(2) := . (4.53)

Proof. Firstwe shall prove the relation (4.50). From Lemmas 4.1 and 4.2, the determinants
Fim1)n—2 @ndF(m 1)n_1 are given by

Fimt1n—2 = Fmn-1Fn—1 —BFmn-2Fh-2, (4.54)
I:(m+1)n—1 = AFnn-1Fn-1 —BFnn-1Fh-2 —BFnn-2Fn-1. (4-55)

Inserting (4.54) and (4.55) into

I:(m—i—l)n—z

V(m+1)nfl =Vo— B s (456)
I:(erl)nfl
we have
an—an—l - Ban—ZFn—Z
\Y; =Vvo—B . 457
(m+1n-1 0 Aan—an—l - Ban—ZFn—l - Ban—an—Z ( )
Rearranging (4.57), we obtain
= F
(Vo—B mmz) ( O—B n 2) .

The relation (4.58) leads to the proof of (4.50).
Next we shall prove the addition formulas (4.51). Wheg- 2, the formula (4.51) can be
easily shown by using (4.50). Let us assume that ; satisfy (4.51) for a certaim > 2. Then
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we shall check that m,1),—1 Satisfy the relation (4.51). From the assumption, we rewrite (4.50)
as

Nm—2(Vn—1)Vn-1—C

V, = . 4.59
(m+1)n 1 Nm—Z(Vn—1)+Vn—1+2b ( )
From (4.52) it follows that
f(Vn—1)Hm-1(Vn-1)
Vv 1=Vp_1— . 4.60
L = oy B 1V 1) — (v DFm 2o 1) OO
SinceHp(z) satisfy
Hp(2) = f'(2) Hp-1(2) — f(2) Hp-2(2), (4.61)
we have
Hm_1(Vnh_1
V(m+1)n—1 — Vn_]_ — f(Vn_l)% et Nm_l(Vn_l) . (462)
By induction, the addition formulas (4.51) are proved. O
Finally, we introduce the variableém) defined by
U™ = vip g, m=234,..., n=0,12,.... (4.63)
Thus let us consider the map
WW=v — W=vmn1 — W=ve, — W=vp, — ---. (4.64)

By virtue of them-tuple addition formulas (4.51), we thus obtain the hierarchy of the discrete
dynamical systems

2 ( %2))2_(:

TG L (4.65)
e 2u$]2) +2b
3 (uE,S) )3—3c W — 2bc 66
Uhi1= o ) € ’ (4.66)
3(up’)2+6buy” + (4b% —c)
(4)\a (4)\2 (4)  (an2
Uﬁl _ (un”)*—6c(un”’ ) —8bcuy,” — (4b=—c)c (4.67)

A3+ 120 (U)2 + 4402 — ) + 4b2(202 — )
and so on. These discrete systems are the same as the Newton type iterations (4.21)—(4.23).

Therefore we obtain the determinantal solutions for the hierarchy of the Newton iterations by

m _  (m g Fm-2
Uy, ' =Uy —B
n 0 an_]_ 9

m=2,34,..., n=0,12,..., (4.68)

from (4.48), (4.49), (4.63) and = /(u™), B= f(u™).
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It is to be remarked that the determinantal solution (4.68) is also expressed as the continued
fraction

am —ym_ Bl_BL Bl (4.69)
A A A
-1

6.2. Other solutions. In the previous subsection, we have constructed the determinantal
solutions (4.68) in terms of only four arithmetic operations. Here we ease this restriction. Let
us allow to use the operation of square root. Then solutions of other type are obtained as follows,

m" m"
(m) (m T2l —rairp
Un  =Uy  — n=012,.... 4.70
n 0 rlmn_rzmn ) (b ] ( )
Herer1 andr; are the roots of the characteristic equation
X2 — Ax+B=0, A= f'(um), B=f(u"), (4.71)

which is given by the three-term recurrence relatiorif When we use the roots;, A, of
f(z) =0, then we have
m A2 (ug” =A™ = Ay (g™ — A"

Uy = , n=0,12.... (4.72)
B

The solution (4.72) is also expressed as
U = (o R0 ) (ug™), (4.73)

where we define the functio¥z), @(z) as

Z—Al

Rn(2) :=2", Y(2) = . (4.74)
Z— )\2
This result implies that the may,,_» is conjugate with the maR,,, namely
Nm_2 = toRno . (4.75)
The relation (4.75) yields the Julia set of the niNip_» by
I(Nm—2) = {w|w=y¢*(2),[z*=1,ze C}. (4.76)

The relation (4.75) wittm= 2 was originally found by Cayley in 1879 (c67]) for the Newton
method.
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7. Determinantal solutions for hierarchy of the Ulam-von Neumann system

7.1. Determinantal solutions. We begin to consider the following linear difference equa-
tion

Vo1=2, Vo =A, Vi1 —AWnw+Bv,_1 =0, n=0,12,..., 4.77)

whereA, B are arbitrary complex constants. A determinantal solution for Eq. (4.77) is obtained
by

Vn: l:n_‘_]_—Blzn_j_7 n:O7 1,2,... 5 (478)

whereF, is the determinant of the degraelefined by

F.1=0, Fo=1, Fn= , n=123,.... (4.79)

Next we consider addition formulas fag, which are given by the following theorem.
THEOREM4.2 (Addition formula) The solutionv, for Eq. (4.77)satisfies the relation
Vim+1)n—1 = Vmn-1Vn-1— B"V(m_1)n-1, m=123,..., n=123,.... (4.80)
This relation gives thertuple addition formulas
Vimn-1= Gm(Vn_1) —B"Gm_2(Vn_1), m=2,34,..., n=123,..., (4.81)

whereG(z) are defined by

Go(2) =1, Gm(®)=| . . - : m=123,.... (4.82)
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Proof. First we shall prove the relation (4.80). From (4.78) and Lemma 4.2, it follows that

Vimt-1)n—1 = Fmntn — BFmn-1)+(n-1) (4.83)
= (anFn -B an—an—l) - B(an—an—l —-B an—ZFn—Z)
- (an— B mez)(Fn -B anZ) - B(ZFmrFanfl - meZFn - ananZ) .

From (4.78) and Lemma 4.3, we have
Vimi1)n—1 = Vmn-1Vn-1 — B"(2Fmn-n— AFnn-n-1) . (4.84)
From (4.78) and Lemma 4.1, we obtain
Vimi1)n—1 = Vmn-1Vn-1 = B"V(m-1)n-1- (4.85)

Thus we have proved (4.80).

Next we shall prove (4.81). Whan = 2, we can easily check (4.81) by (4.80). We assume
thatvmn-1 satisfy (4.81) for a certaim > 2. Then we shall show thaty, 1)1 satisfy (4.81).
From (4.80) and the assumption, we have

V(im+1)n-1 = Vmn-1Vn-1 — B" Vim-1)n-1 (4.86)
= Vn-1(Gm(Vn-1) — BnGm—Z(Vn—l)) —B" (Vn—1Gm-1(Vn—1) — BnGm—3(Vn—l))
= (Vn-1Gm(Vn-1) — B"Gm-1(Vh-1)) — B"(Vn-1Gm-2(Vn-1) — B"Gm_3(Vn-1)) .

SinceG(z) satisfy

Gm+1(2) = 2Gn(2) —B"Gm-1(2), (4.87)

we obtain
Vimin-1 = Gm1(Va-1) = B"Gm-1(Va-1). (4.88)
By induction, we have proved (4.81). ]

In this paragraph, we finally derive the UvN hierarchy. We introduce the variaB‘i‘ésuch
that

U™ = Vi1, m=234,..., n=0,1,2,.... (4.89)

Namely, we consider the map

(m)

(m) _ My, e

=Vo + U =Vp1 — U =Vyg_1 +— . (4.90)
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By virtue of them-tuple addition formulas (4.81), we derive a hierarchy of nonautonomous
discrete dynamical systems

u?)) = (ui?)2— 28", (4.91)
u?, = Y-z, (4.92)
ul = (ut”)* — aB" ()2 + 287", (4.93)
Uty = (UR”)® = 5B" (uh”)®+-5B7"uy, (4.94)

and so on. We remark that determinantal solutions for systems (4.91)—(4.94) can be obtained
from (4.78) and (4.89). When we €t= 0 and replace the variabtéﬁz) such that

u? = 1-2un, (4.95)
we derive a solvable logistic map
Untr1 = 2Up(1—up), n=0,12,.... (4.96)

The system (4.96) is not chaotic system for initial value up < 1, and it converges td/2
exponentially. Next we s&& = 1 and replace the variablelém) such that

u™ s 2(1—2u™). (4.97)

Then we obtain the UvN hierarchy from (4.91)—(4.94) by

u? = aud (1-u?), (4.98)
U =ul (3 aud)?, (4.99)
) = 1608’ (1— Uiy (1—2u))?, (4.100)
u®, = u? (5-4aul (5—4u))?, (4.101)

and so on. Furthermore we obtain the determinantal solutions for the UvN hierarchy by

u,&m):%—%(an—Fnﬁz), m=234,..., n=0,12,..., (4.102)
whereA=2(1— 2u(()m)), B = 1 andF, are defined by (4.79).

Relationship to the known determinantal solutidd][and the analytic solution6)] of the
logistic map is not clear. The determinants which appeatlhlpok rather different fronfon.
Indeed, the value of the paramejernof the logistic mapun1 = Hun(1—uy) is not specified
in [11] and [69]. Recently the quadratic map (4.7) in real and complex domains is reviewed in
[54].
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7.2. Lyapunov exponents.Let us restrict the initial valuelém) to real values such that
0< ugm) < 1. We shall compute the Lyapunov exponents of the UvN hierarchy without use
of explicit invariant measures. Let us Wrinfqr_? = LP(ur(fn)) forn=0,1,2,.... The Lyapunov
exponents are expressed as

. 1”—1 / (m)
A= lim = Z}Iog)w (U] )’ . (4.103)
j=

n—oo N

Here we consider the partial diﬁerentiationlétugm)) with respect tcu(om), which are given by

ow(ul™ ou™
% = W) (4.104)
0u(() ) dué
From (4.104) anailgm) = w(UST)1)1 it follows that
ow(u™)
(m)
m>)=a“—0, j=0,1,2,...,n—1. (4.105)
ow(u™)

aui"

7 (ug

From (4.105) andjﬁ]m) = klJ(ufE)l), the Lyapunov exponents (4.103) are written as

(m)
1
A = lim Zlog 0“—?m) . (4.106)
ou,
Inserting the solution (4.102) into (4.106), we obtain
A = lim %Iog 9 (Fur _(rf)m“‘Z) (4.107)
ou,
Using Lemma 4.4, we have
1 1
A= |!lm ﬁlog|m“an_1| = Iogm+rlllm ﬁlog|an_1] . (4.108)
SinceF, satisfy the second order linear difference equation
Frv1—2(1—Ug") Fa+ Fp 1 =0, (4.109)
the determinantB, can be also expressed as
F,= clr1”+c2r2”. (4.110)
Herery, r are the roots of the characteristic equation
X —2(1-u™)x+1=0, (4.111)
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andcy, ¢, are determined by the initial condition. From the conditia uém) < 1, it follows

that|r1| = |r2| = 1. Thus there exists a positive constdhisuch thaO < |F,| < M. Moreover
we remove the zeros cﬁnp_l(uém)) = 0 from the initial region0 < ugm) < 1, then we have
0 < |Fy| < M. Therefore we obtaihg < log|Fw_1| < L1, whereLg andL; are certain positive

constants. It is concluded that
1
rIllm ﬁlog|anf1| =0. (4.112)
We can state:

THEOREM4.3. Let us restrict the initial valueaém) to real values such thdl < uém) <1l
Then the Lyapunov exponents of the UvN hierarchyi@gen.

8. Determinantal solutions for hierarchy of the Steffensen iteration

In this section, we give determinantal solutions for the discrete dynamical systems corre-
sponding to the extended Steffensen method which is proposed in Chapter 3.
Let us consider the quadratic equation

f(z):=2+2bz+c=0, (4.113)

wherezis a complex variable, anlol c are some complex constants. Rearranging Eq. (4.113),
we have the equation,

- % — 0(2), (4.114)
wherea is an auxiliary and arbitrary constant. We write the right hand side of Eq. (4.114)
as@(z). We consider the extended Steffensen method (3.18) for Eq. (4.113) with the simple
iteration functiong(z). The hierarchy of the Steffensen type iterations are given by

U™ = g (ug"™), m=234...., n=012 ..., (4.115)

from (3.18). In B, 7], Arai, Okamoto, and Kametaka find a new addition formuladok x) in
terms of addition formulas for a three parameter family of functions. The aim of this section is
to obtain determinantal solutions for the hierarchy (4.115) by using a theoréndh |

To find solutions, we begin to consider the simple iteration
(a—b)vy—c

j=0,1,2,.... 4.116
Vn+(a+b)7 J P B ( )

Vel = @(Vn) =

We present addition formulas @f, which are resulted from the following theorem.
58



THEOREM4.4 (Addition formula) Let the auxiliary parametea be set bya = b+ vp. The
sequence, generated by the iteratiofd.116)satisfies then-tuple addition formulas

m+1
m - -~ ~
“ ~ 10 1 1 1
Vh-1 Vn o Vnim-2
v v v 1 Vvha Vihn “ Vngm-2
n n+1 n+m-1
Vmnem-1)-1=| . . . /1 Vi Vel 0 Varme1|,
Vn4rm-2 Vnrm-1 °° Vn42m-3
1 Vaim—2 Vaym-1 ** Vni2m-3

(4.117)
form=2,3,4,...andn=1,2,3,....

Proof. In order to prove it, we first introduce the theorem in the literatére/]. Let p(z)
be the three parameter family of functions defined by

ay—p
V-1

P(2):=p(a,B,y:2) = (4.118)

with a — B # 0, y # 0. Then function9(z) satisfies the addition formula

P(X1+Xo+ -+ Xm+ Y1+ Y2+ +Ym) =

0 1 1 1

1 p(xa+y1) p(Xa+yz2) -+ P(X1+Ym)
1 p(x2+y1) Pp(Xe+y2) -+ P(X2+Ym)|,

p(xaty1) p(xatyz) -+ P(Xe+ym)
P(x2+y1) P(Xe+y2) -+ P(X2+Ym) /

P(Xm+Y1) P(Xm+Yy2) - P(Xm+Ym)

1 p(Xm+y1) P(Xm+Yy2) - P(Xm+Ym)

(4.119)
provided thaty Vi # 1.
We remark thap(z) satisfies the relations
_(ay=B)p(z) —aB(y—1)
P =y 0@ (- By) (4120
o(x+y) = — PXPY) —aB (4.121)

p(X)+p(y) — (a+B)
In order to adapt the addition formula (4.119\tpwe compare the recurrence relations (4.116)
with (4.120). From the comparison, we set the parameters as

_2ata-f3

(4.122)
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Thus we obtairv, = p(n+ np), where the integemg is determined by an initial condition. Here
we chooseap = 1, namely,vo = p(1). Then we should restrict the auxiliary parameters

a:=b+vp. (4.123)

Insertingx; = n+i—1, yj = j — 1 into (4.119), we therefore obtain the addition formulas
(4.117). O

Next we assume that there exists a natural nurhib@r which uﬁ,m) = Vvj_1 holds for each
stepn. From Theorem 4.4 and the assumption, the iteration (4.115) is rewritten as

U = P 1 (U"Y) = Pr-1(Vi—1) = Vit 1)1 (4.124)

for each stem. We shall determine a natural numbédor each stem. Startinguém) =\Vp and

| =1, and computing the relation (4.124) recursively, we have

U™ = g (W) = D1 (Vo) = Vg1, ifl=1, (4.125)
ugm) _ ¢m—1<u(1m)) = D1 (V1) = Virdar?m_1 if | =n?, (4.126)
Ugm) = cDm—l(U(zm)) = ®m-1(Vippme—m-1) = Vi pmpom-1, If | = m’+mf—m,  (4.127)

and so on. By induction, we obtain

The relation (4.128) yields the map
ugm) - Vo = Ug_m) - V(m+l)(mfl) —> Ugm) - V(m+1)(rr12—1) = cee (4129)

which is the extended Steffensen iteration.

We finally obtain determinantal solution. Since the recurrence relation (4.116) is a discrete
Riccati equation (4.41), the determinantal solutionfptan be obtained from (4.44) and (4.45).
By virtue of (4.128), we finally obtain the determinantal solution for (4.115) by

Fint1)(mr-1)-1
Fme1)m—1)

u” =ul” —B

n=012,..., (4.130)
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F1=0, F=1, F.= . n=123... (4131

It should be noted that the determinantal solution (4.130)—(4.131) is also expressed as the
continued fraction

P el Bl B il (4.132)
A la A
(m+1)Tm“—1)

We have constructed the determinantal solution (4.130)—(4.131) by only using four arith-
metic operations. Here we ease this restriction. Let us allow to use the operation of square root.
Another type solution for (4.115) is obtained by

(m A
u™ = p (Al, Az, —u?m) ZomH e — m) (4.133)
U — )\1

from (4.118), (4.122), (4.128) awd = p(n+1). HereA; andA, denote the roots of the equation
f(z)=0.

9. Concluding remarks

In this chapter, we have obtained the determinantal solutions for irreversible discrete equa-
tions. We have dealt with the hierarchy of the UvN system, and the hierarchies of discrete dy-
namical systems which are derived by applying the Newton type iterations and the Steffensen
type iterations to a quadratic equation. According to the setting of parameters and initial condi-
tions, these systems give rise to algorithms having higher order convergence rates, or solvable
chaotic systems. For all cases, we have constructed the explicit solutions in a unified way.

Firstly, we have obtained the determinantal solutign$or the second order linear differ-
ence equation and the discrete Riccati equation. We have derived the addition formulas for the
solutionsv, (Theorems 4.1, 4.2, 4.4). At the next step, we have focused only on the vglues
for integersm > 2. Then we have introduced the new variahllé@ = vy for eachm. Finally,
we have showed that the addition formulas yield the irreversible dynamical systerﬁqg.oﬁ\s
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a result, we have derived the hierarchies of new solvable irreversible dynamical systems and
have obtained their determinantal solutions simultaneously.

From the determinantal solutions for the UvN hierarchy, we have obtained the Lyapunov
exponents of them without explicit use of invariant measures (Theorem 4.3).
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CHAPTER 5

Concluding Remarks

In this thesis, we have studied integrability of a continuous evolution equation and some
discrete equations. As an application of the soliton theory, we have proposed a numerical
algorithm based on the techniques in the nonlinear integrable systems.

In Chapter 2, we have considered the GDNLS equation. We first have constructed the trav-
eling wave solution which is valid for any real values of parameters. We have applied the
Painle\e test to the GDNLS equation for detecting integrability. We have shown that the equa-
tion possesses the Paingeproperty in a strict sense only for the known integrable cases of
parameters. Therefore we have shown that it possesses a conditional @pnoleerty for an
infinite number of cases of conditions for parameters, which is the same condition as that of the
single-valued property of the traveling wave solution. When the GDNLS equation has the con-
ditional Painle property, it is necessary for the functigfx,t) to satisfy an equation which is
transformed to the dispersionless KdV equation. We remark the interesting fact that the same
condition for @(x,t) appeared at the Painke\analysis of the long and short wave interaction
equation by YoshinagaJ/, 89. Next we have examined stability of the solitary wave by the
numerical simulation. Remarkable difference between integrable case and non-integrable case
has not been observed, except for the quantities of ripples generated by interactions. The travel-
ing wave solution is stable in interactions and behaves like a soliton. In conclusion, the GDNLS
equation is a near-integrable system which has a conditional Paipl®perty and a stable
soliton-like traveling wave solution. Further theoretical analysis on stability may be necessary.

In Chapter 3, we have proposed an extension of the Steffensen iteration for findingra root
of the nonlinear equation= ¢@(x). We have developed the extended Steffensen method in terms
of the k-th Shanks transform which is a sequence convergence acceleration algorithm. The re-
sulting iteration method does not need any derivative. And it has a higher order convergence
rate, although the Shanks transform is originally a linearly convergent algorithm. If the equa-
tion satisfiesy/(a) # 0,+1, then the sequence generated by the extended Steffensen method
has the k+ 1)-th order convergence rate (Theorem 3.1). On the other hand, if the equation sat-
isfiesq/(a) = 0, then the extended Steffensen iteration has remarkablikth@)2<~1-th order
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convergence rate (Theorem 3.2). These theoretical convergence rates have been verified in nu-
merical examples (Examples 1, 2). For the implementation of the extended Steffensen iteration,
thee-algorithm is especially useful to decrease the amount of computations in the calculation of
Hankel determinants. This algorithm is stable for errors and equivalent to the discrete potential
KdV equation. Consequently, computation due to the numbers of mappings takes a major part
of the computational complexity. We have shown that the extended Steffensen iteration with

k = 2 has the minimal numbers of mappings in a special case of the Kepler equation (Example
3). Moreover, the extended Steffensen iteration converges for more cases of parameters than
the Newton method.

In Chapter 4, we have obtained the determinantal solutions for irreversible discrete equa-
tions. We have dealt with the hierarchy of the UvN system, and the hierarchies of discrete
dynamical systems which are derived by applying the Newton type iterations and the Stef-
fensen type iterations to a quadratic equation. According to the setting of parameters and initial
conditions, these systems give rise to algorithms having higher order convergence rates, or solv-
able chaotic systems. For all cases, we have constructed the solutions in a unified way. Firstly,
we have obtained the determinantal solutign$or some linear systems. We have derived the
addition formulas for the solutiong,. At the next step, we have focused only on the valyes
for integersm > 2. Then we have introduced the new variabllé@ = vy for eachm. Finally,
we have showed that the addition formulas yield the irreversible dynamical syster&qg.o@s
a result, we have obtained the hierarchies of new solvable irreversible dynamical systems and
their determinantal solutions simultaneously.
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