next up previous contents
Next: 4 行列式の定義 Up: 4 行列式 Previous: 2 置換   Contents

3 多項式の文字の置換

定義 4.30 (多項式の変数の置換)   $ n$ 変数 $ x_1$, $ x_2$, $ \cdots$, $ x_n$ の 多項式 $ f(x_1,x_2,\cdots,x_n)$ と 置換 $ \sigma\in S_n$ に対して

$\displaystyle \sigma\,f(x_1,x_2,\cdots,x_n)$ $\displaystyle = f(x_{\sigma_{1}},x_{\sigma_{2}},\cdots,x_{\sigma_{n}})$ (610)

と定義する.

例 4.31 (多項式の変数の置換の具体例)  

$\displaystyle f(x_{1},x_{2},x_{3})=x_{1}x_{2}+2x_{2}+3x_{3}$ (611)

とする.

$\displaystyle \sigma= \begin{pmatrix}1 & 2 \end{pmatrix}$ (612)

のとき

$\displaystyle \sigma\,f(x_{1},x_{2},x_{3})=f(x_{2},x_{1},x_{3})= x_{2}x_{1}+2x_{1}+3x_{3}$ (613)

となる.

$\displaystyle \sigma= \begin{pmatrix}1 & 2 & 3 \end{pmatrix}$ (614)

のとき

$\displaystyle \sigma\,f(x_{1},x_{2},x_{3})=f(x_{2},x_{3},x_{1})= x_{2}x_{3}+2x_{3}+3x_{1}$ (615)

となる.

定理 4.32 (置換の積)   $ \sigma,\tau\in S_{n}$ に対して

$\displaystyle (\sigma \tau)f(x_1,\cdots,x_n)$ $\displaystyle = (\sigma(\tau f))(x_1,\cdots,x_n)$ (616)

が成立する.


(証明)

(左辺) $\displaystyle = (\sigma\tau)f(x_{1},\cdots,x_{n})= f(x_{(\sigma\tau)(1)},\cdots,x_{(\sigma\tau)(n)})\,,$ (617)
(右辺) $\displaystyle = (\sigma(\tau\,f))(x_{1},\cdots,x_{n})= \sigma\,f(x_{\tau(1)},\cdots,x_{\tau(n)})$ (618)
  $\displaystyle = f(x_{\sigma(\tau(1))},\cdots,x_{\sigma(\tau(n))})= f(x_{(\sigma\tau)(1)},\cdots,x_{(\sigma\tau)(n)})\,.$ (619)

定義 4.33 (差積)   $ n$ 変数 $ x_1,\cdots,x_n$ の多項式

$\displaystyle \Delta(x_1,x_2,\cdots,x_n)= \prod_{i\leq i<j\leq n}(x_{i}-x_{j})$ (620)

差積と呼ぶ.

例 4.34 (差積の具体例)  

$\displaystyle \Delta(x_{1},x_{2})$ $\displaystyle = x_{1}-x_{2}\,,$ (621)
$\displaystyle \Delta(x_{1},x_{2},x_{3})$ $\displaystyle = (x_{1}-x_{2})(x_{1}-x_{3})(x_{2}-x_{3})\,,$ (622)
$\displaystyle \Delta(x_{1},x_{2},x_{3},x_{4})$ $\displaystyle = (x_{1}-x_{2})(x_{1}-x_{3})(x_{1}-x_{4}) (x_{2}-x_{3})(x_{2}-x_{4}) (x_{3}-x_{4})\,,$ (623)
$\displaystyle \Delta(x_{1},x_{2},x_{3},x_{4},x_{5})$ $\displaystyle = (x_{1}-x_{2})(x_{1}-x_{3})(x_{1}-x_{4})(x_{1}-x_{5})$ (624)
  $\displaystyle \qquad\qquad \times(x_{2}-x_{3})(x_{2}-x_{4})(x_{2}-x_{5})$ (625)
  $\displaystyle \qquad\qquad\qquad\qquad \times(x_{3}-x_{4})(x_{3}-x_{5})$ (626)
  $\displaystyle \qquad\qquad\qquad\qquad\qquad\qquad \times(x_{4}-x_{5})\,.$ (627)

定理 4.35 (互換による差積の置換)   互換 $ \sigma=\begin{pmatrix}i & j \end{pmatrix}$ に対して

$\displaystyle \sigma\,\Delta(x_1,\cdots,x_n)= -\Delta(x_1,\cdots,x_n)$ (628)

が成立する.

定理 4.36 (差積の変数の置換)   置換 $ \sigma\in S_{n}$ に対して

$\displaystyle \sigma\,\Delta(x_1,\cdots,x_n)= \mathrm{sgn}\,(\sigma)\,\Delta(x_1,\cdots,x_n)$ (629)

が成立する.

定理 4.37 (置換の符号の一意性)   置換の符合は互換の積の表わし方によらず一意に定まる.


(証明) 置換 $ \sigma$ が互換の積を用いて二通りで表せたとする. すなわち,

$\displaystyle \sigma$ $\displaystyle =\sigma_{m}\sigma_{m-1}\cdots\sigma_{2}\sigma_{1}\,,$ (630)
$\displaystyle \sigma$ $\displaystyle =\tau_{l}\tau_{l-1}\cdots\tau_{2}\tau_{1}\,$ (631)

とする. このときそれぞれ

$\displaystyle \sigma\,\Delta(x_{1},\cdots,x_{n})= (\sigma_{m}\cdots\sigma_{1})\Delta(x_{1},\cdots,x_{n})= (-1)^{m}\Delta\,,$ (632)
$\displaystyle \sigma\,\Delta(x_{1},\cdots,x_{n})= (\tau_{l}\cdots\tau_{1})\Delta(x_{1},\cdots,x_{n})= (-1)^{l}\Delta\,$ (633)

となる.よって

$\displaystyle (-1)^{m}\Delta(x_{1},\cdots,x_{n})= (-1)^{l}\Delta(x_{1},\cdots,x_{n})$ (634)

である.恒等的には $ \Delta\neq0$ であるから

$\displaystyle (-1)^{m}=(-1)^{l}$ (635)

が成立する. 以上より符合 $ \mathrm{sgn}\,(\sigma)$ は互換の積の表し方によらず $ \mathrm{sgn}\,(\sigma)=(-1)^{m}=(-1)^{l}$ と一意に定まる.


next up previous contents
Next: 4 行列式の定義 Up: 4 行列式 Previous: 2 置換   Contents

Kondo Koichi
Created at 2004/11/26