4.2 導関数
定義 4.7 (導関数) 関数が連続関数であり, 定義域内の任意の点において微分可能であるとする. このとき関数
が存在する.を
の 導関数(derived function, derivative)と呼ぶ. 導関数はまた
という表記も用いる.
例 4.8 (導関数の計算例) 関数の導関数を求める. まず
とおく.を計算すると
を得る. これより
となる. 極限は
の任意の点において有限確定である. よって導関数
が存在し
が求まる.
Kondo Koichi
![]()
![]()
平成19年1月23日