3.9 演習問題 〜 部分空間

3.39 (部分空間)   ベクトル空間 $ \mathbb{R}^n$ において, 部分集合 $ W$ は部分空間であるか述べよ.

(1) $ \displaystyle{
W=\left\{\left.\,{\vec{x}\in\mathbb{R}^{n}}\,\,\right\vert\,\,{A\vec{x}=\vec{0}}\,\right\}}$      (2) $ \displaystyle{
W=\left\{\left.\,{\vec{x}\in\mathbb{R}^{n}}\,\,\right\vert\,\,{A\vec{x}=\vec{b}}\,\right\}}$ (ただし, $ \vec{b}\neq\vec{0}$
(3) $ \displaystyle{
W=\left\{\left.\,{\vec{x}\in\mathbb{R}^{n}}\,\,\right\vert\,\,{\Vert\vec{x}\Vert=1}\,\right\}}$      (4) $ \displaystyle{
W=\left\{\left.\,{\vec{x}\in\mathbb{R}^{n}}\,\,\right\vert\,\,{\Vert\vec{x}\Vert\le1}\,\right\}}$
(5) $ \displaystyle{
W=\left\{\left.\,{\vec{x}\in\mathbb{R}^{n}}\,\,\right\vert\,\,{(\vec{x},\vec{a})=0}\,\right\}}$ $ \vec{a}\in\mathbb{R}^{n}$ はあるベクトル)
(6) $ \displaystyle{
W=\left\{\left.\,{\vec{x}\in\mathbb{R}^{n}}\,\,\right\vert\,\,{x_{1}\le1,x_{2}\le1,\cdots,x_{n}\le1}\,\right\}}$

3.40 (部分空間)   ベクトル空間 $ \mathbb{R}^2$ において, 部分集合 $ W$ は部分空間であるか述べよ.

(1) $ \displaystyle{
W=\left\{\left.\,{
\begin{bmatrix}
x_{1} \\ x_{2}
\end{bmatrix}\in \mathbb{R}^2}\,\,\right\vert\,\,{2x_{1}-x_{2}=0}\,\right\}}$         (2) $ \displaystyle{
W=\left\{\left.\,{
\begin{bmatrix}
x_{1} \\ x_{2}
\end{bmatrix}\in \mathbb{R}^2}\,\,\right\vert\,\,{2x_{1}-x_{2}=3}\,\right\}}$

(3) $ \displaystyle{
W=\left\{\left.\,{
\begin{bmatrix}
x_{1} \\ x_{2}
\end{bmatrix}\in \mathbb{R}^2}\,\,\right\vert\,\,{x_{1}-x_{2}=0}\,\right\}}$         (4) $ \displaystyle{
W=\left\{\left.\,{
\begin{bmatrix}
x_{1} \\ x_{2}
\end{bmatrix}\in \mathbb{R}^2}\,\,\right\vert\,\,{x_{1}+x_{2}=1}\,\right\}}$

(5) $ \displaystyle{
W=\left\{\left.\,{
\begin{bmatrix}
x_{1} \\ x_{2}
\end{bmatrix}\in \mathbb{R}^2}\,\,\right\vert\,\,{x_{1}=0,x_{2}=0}\,\right\}}$         (6) $ \displaystyle{
W=\left\{\left.\,{
\begin{bmatrix}
x_{1} \\ x_{2}
\end{bmatrix}\in \mathbb{R}^2}\,\,\right\vert\,\,{x_{1}>0,x_{2}>0}\,\right\}}$

(7) $ \displaystyle{
W=\left\{\left.\,{
\begin{bmatrix}
x_{1} \\ x_{2}
\end{bmatrix}...
...ay}{r}
2x_{1} + 3x_{2} \geq 0 \\
4x_{1} + x_{2} \geq 0
\end{array}}\,\right\}}$         (8) $ \displaystyle{
W=\left\{\left.\,{
\begin{bmatrix}
x_{1} \\ x_{2}
\end{bmatrix}...
...ay}{r}
2x_{1} + 3x_{2} \geq 1 \\
4x_{1} + x_{2} \geq 1
\end{array}}\,\right\}}$

(9) $ \displaystyle{
W=\left\{\left.\,{
\begin{bmatrix}
x_{1} \\ x_{2}
\end{bmatrix}\in \mathbb{R}^2}\,\,\right\vert\,\,{x_{1}{}^2+x_{2}{}^2\leq 1}\,\right\}}$     (10) $ \displaystyle{
W=\left\{\left.\,{
\begin{bmatrix}
x_{1} \\ x_{2}
\end{bmatrix}...
...1} \\ x_{2}
\end{bmatrix}\!=\!
\begin{bmatrix}
0 \\ 0
\end{bmatrix}}\,\right\}}$

(11) $ \displaystyle{
W=\left\{\left.\,{
\begin{bmatrix}
x_{1} \\ x_{2}
\end{bmatrix}...
...{2}
\end{bmatrix}\!=\!
\begin{bmatrix}
b_{1} \\ b_{2}
\end{bmatrix}}\,\right\}}$

3.41 (部分空間)   ベクトル空間 $ \mathbb{R}^3$ において, 部分集合 $ W$ は部分空間であるか述べよ.

(1) $ \displaystyle{
W=\left\{\left.\,{\begin{bmatrix}c_1 \\ c_2 \\ 0 \end{bmatrix}\in\mathbb{R}^3}\,\,\right\vert\,\,{c_1,c_2\in\mathbb{R}}\,\right\}}$         (2) $ \displaystyle{
W=\left\{\left.\,{\begin{bmatrix}c \\ -c \\ 0 \end{bmatrix}\in\mathbb{R}^3}\,\,\right\vert\,\,{c\in\mathbb{R}}\,\right\}}$

(3) $ \displaystyle{
W=\left\{\left.\,{\begin{bmatrix}c_1 \\ c_2 \\ 1 \end{bmatrix}\in\mathbb{R}^3}\,\,\right\vert\,\,{c_1,c_2\in\mathbb{R}}\,\right\}}$         (4) $ \displaystyle{
W=\left\{\left.\,{\begin{bmatrix}c \\ -c \\ 1 \end{bmatrix}\in\mathbb{R}^3}\,\,\right\vert\,\,{c\in\mathbb{R}}\,\right\}}$

(5) $ \displaystyle{
W=\left\{\left.\,{\begin{bmatrix}c_1 \\ c_2 \\ c_1-c_2 \end{bmatrix}\in\mathbb{R}^3}\,\,\right\vert\,\,{c_1,c_2\in\mathbb{R}}\,\right\}}$         (6) $ \displaystyle{
W=\left\{\left.\,{\begin{bmatrix}c_1 \\ c_2 \\ c_3 \end{bmatrix}\in\mathbb{R}^3}\,\,\right\vert\,\,{c_1,c_2,c_3\in\mathbb{R},c_3>0}\,\right\}}$         (7) $ \displaystyle{
W=\left\{\left.\,{\begin{bmatrix}c_1+c_2 \\ -c_1 \\ 2c_2 \end{bmatrix}\in\mathbb{R}^3}\,\,\right\vert\,\,{c_1,c_2\in\mathbb{R}}\,\right\}}$         (8) $ \displaystyle{
W=\left\{\left.\,{\begin{bmatrix}c_1 \\ c_1 \\ c_2 \end{bmatrix}\in\mathbb{R}^3}\,\,\right\vert\,\,{c_1,c_2\in\mathbb{R}}\,\right\}}$

(9) $ \displaystyle{
W=\left\{\left.\,{\begin{bmatrix}x_1 \\ x_2 \\ x_3 \end{bmatrix}\in\mathbb{R}^3}\,\,\right\vert\,\,{x_1+x_2+x_3=0}\,\right\}}$     (10) $ \displaystyle{
W=\left\{\left.\,{
\begin{bmatrix}
x_{1} \\ x_{2} \\ x_{3}
\end...
...athbb{R}^{3}}\,\,\right\vert\,\,{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\leq1}\,\right\}}$

(11) $ \displaystyle{
W=\left\{\left.\,{
\begin{bmatrix}
x_{1} \\ x_{2} \\ x_{3}
\end...
...athbb{R}^{3}}\,\,\right\vert\,\,{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\geq0}\,\right\}}$     (12) $ \displaystyle{
W=\left\{\left.\,{
\begin{bmatrix}
x_{1} \\ x_{2} \\ x_{3}
\end...
...{array}{r}
3x_{1}-x_{2}+5x_{3}\ge0 \\
x_{2}-2x_{3}\ge0
\end{array}}\,\right\}}$         (13) $ \displaystyle{
W=\left\{\left.\,{
\begin{bmatrix}
x_{1} \\ x_{2} \\ x_{3}
\end...
...{1}-x_{2}+5x_{3}\ge1 \\
x_{2}-2x_{3}\ge1 \\
x_{3}\ge1
\end{array}}\,\right\}}$

(14) $ \displaystyle{
W=\left\{\left.\,{
\begin{bmatrix}
x_{1} \\ x_{2} \\ x_{3}
\end...
...x_{2} \\ x_{3}
\end{bmatrix}=
\begin{bmatrix}
0 \\ 0
\end{bmatrix}}\,\right\}}$

(15) $ \displaystyle{
W=\left\{\left.\,{
\begin{bmatrix}
x_{1} \\ x_{2} \\ x_{3}
\end...
...d{bmatrix}=
\begin{bmatrix}
b_{1} \\ b_{2}
\end{bmatrix}\neq\vec{0}}\,\right\}}$

(16) $ \displaystyle{
W=\left\{\left.\,{
\begin{bmatrix}
x_{1} \\ x_{2} \\ x_{3}
\end...
...} \\ x_{3}
\end{bmatrix}=
\begin{bmatrix}
0 \\ 0 \\ 0
\end{bmatrix}}\,\right\}}$

(17) $ \displaystyle{
W=\left\{\left.\,{
\begin{bmatrix}
x_{1} \\ x_{2} \\ x_{3}
\end...
...}=
\begin{bmatrix}
b_{1} \\ b_{2} \\ b_{3}
\end{bmatrix}\neq\vec{0}}\,\right\}}$

3.42 (部分空間)   ベクトル空間 $ \mathbb{R}[x]_3$ において, 部分集合 $ W$ は部分空間であるか述べよ.

(1) $ \displaystyle{
W=\left\{\left.\,{f(x)\in\mathbb{R}[x]_{3}}\,\,\right\vert\,\,{f(x)=0}\,\right\}}$          (2) $ \displaystyle{
W=\left\{\left.\,{f(x)\in\mathbb{R}[x]_{3}}\,\,\right\vert\,\,{f(x)=1}\,\right\}}$

(3) $ \displaystyle{
W=\left\{\left.\,{f(x)\in\mathbb{R}[x]_{3}}\,\,\right\vert\,\,{f(0)=0,\,f(1)=0}\,\right\}}$      (4) $ \displaystyle{
W=\left\{\left.\,{f(x)\in\mathbb{R}[x]_{3}}\,\,\right\vert\,\,{f(0)=1,\,f(1)=1}\,\right\}}$      (5) $ \displaystyle{
W=\left\{\left.\,{f(x)\in\mathbb{R}[x]_{3}}\,\,\right\vert\,\,{f(3)=0,\,f(2)=0}\,\right\}}$      (6) $ \displaystyle{
W=\left\{\left.\,{f(x)\in\mathbb{R}[x]_{3}}\,\,\right\vert\,\,{f(0)\geq0,\,f(1)\geq0}\,\right\}}$      (7) $ \displaystyle{
W=\left\{\left.\,{f(x)\in\mathbb{R}[x]_{3}}\,\,\right\vert\,\,{f(0)\geq1,\,f(1)\geq1}\,\right\}}$      (8) $ \displaystyle{
W=\left\{\left.\,{f(x)\in\mathbb{R}[x]_{3}}\,\,\right\vert\,\,{f(x)\ge0}\,\right\}}$

(9) $ \displaystyle{
W=\left\{\left.\,{f(x)\in\mathbb{R}[x]_{3}}\,\,\right\vert\,\,{f(x)\ge1}\,\right\}}$      (10) $ \displaystyle{
W=\left\{\left.\,{f(x)\in\mathbb{R}[x]_{3}}\,\,\right\vert\,\,{\left(f(1)\right)^2=0}\,\right\}}$

(11) $ \displaystyle{
W=\left\{\left.\,{f(x)\in\mathbb{R}[x]_{3}}\,\,\right\vert\,\,{f'(x)=0}\,\right\}}$      (12) $ \displaystyle{
W=\left\{\left.\,{f(x)\in\mathbb{R}[x]_{3}}\,\,\right\vert\,\,{f'(x)=1}\,\right\}}$

(13) $ \displaystyle{
W=\left\{\left.\,{f(x)\in\mathbb{R}[x]_{3}}\,\,\right\vert\,\,{f(1)=0,\,f'(1)=0}\,\right\}}$

(14) $ \displaystyle{
W=\left\{\left.\,{f(x)\in\mathbb{R}[x]_{3}}\,\,\right\vert\,\,{f(1)=0,\,f'(1)=0,\,f''(1)=0}\,\right\}}$

(15) $ \displaystyle{
W=\left\{\left.\,{f(x)\in\mathbb{R}[x]_{3}}\,\,\right\vert\,\,{f(1)=1,\,f'(1)=1,\,f''(1)=1}\,\right\}}$

(16) $ \displaystyle{W=\left\{\left.\,{f(x)\in\mathbb{R}[x]_{3}}\,\,\right\vert\,\,{f'(3)=0,\,f(1)=0}\,\right\}}$

(17) $ \displaystyle{
W=\left\{\left.\,{f(x)\in\mathbb{R}[x]_{3}}\,\,\right\vert\,\,{f(0)+f'(1)=0,\,f'(0)+f''(1)=0}\,\right\}}$

(18) $ \displaystyle{W=\left\{\left.\,{f(x)\in\mathbb{R}[x]_{3}}\,\,\right\vert\,\,{f''(x)-2xf'(x)=0}\,\right\}}$

Kondo Koichi
平成18年1月17日