連立 1 次方程式
 |
(565) |
を考える.
このときこの方程式が一意な解ともつ条件を求める.
方程式を書き直すと
 |
(566) |
となる.
拡大係数行列は
![$\displaystyle [A\,\vert\,\vec{b}]$](img1879.png) |
![$\displaystyle = \left[ \begin{array}{cc\vert c} a_{11} & a_{12} & b_{1} \\ a_{21} & a_{22} & b_{2} \end{array} \right]$](img1880.png) |
(567) |
である.
簡約化を行う:
|
![$\displaystyle \left[ \begin{array}{cc\vert c} a_{11} & a_{12} & b_{1} \\ a_{21} & a_{22} & b_{2} \end{array} \right]$](img1881.png) |
(568) |
|
(第一行に
を掛けて第二行に加える.) |
(569) |
|
![$\displaystyle \longrightarrow \left[ \begin{array}{cc\vert c} a_{11} & a_{12} &...
...}}} & \displaystyle{\frac{a_{11}b_{2}-b_{1}a_{21}}{a_{11}}} \end{array} \right]$](img1883.png) |
(570) |
|
(第二行に を掛ける.) |
(571) |
|
![$\displaystyle \longrightarrow \left[ \begin{array}{cc\vert c} a_{11} & a_{12} &...
...{22}-a_{12}a_{21}} & \displaystyle{a_{11}b_{2}-b_{1}a_{21}} \end{array} \right]$](img1884.png) |
(572) |
|
(第二行に
を 掛けて第一行に加える.) |
(573) |
|
![$\displaystyle \longrightarrow \left[ \begin{array}{cc\vert c} a_{11} & 0 & \dis...
...{22}-a_{12}a_{21}} & \displaystyle{a_{11}b_{2}-b_{1}a_{21}} \end{array} \right]$](img1886.png) |
(574) |
|
(第一行に を掛ける.) |
(575) |
|
(第二行に
を掛ける.) |
(576) |
|
![$\displaystyle \longrightarrow \left[ \begin{array}{cc\vert c} 1 & 0 & \displays...
...rac{a_{11}b_{2}-b_{1}a_{21}}{a_{11}a_{22}-a_{12}a_{21}}} \end{array} \right]\,.$](img1889.png) |
(577) |
ここで
と
 |
(578) |
を条件としてかした.
このとき拡大係数行列の階数は
であり,
一意な解
 |
 |
(579) |
をもつ.
この結果より,行列
に対してスカラー量
を
 |
 |
(580) |
と定義する.
を行列式(determinant)という.
以上より,
連立方程式の解の判別条件を得る.
のとき行列
はフルランクであり
一意な解をもつ.
のとき行列
はランクが落ち
一意な解をもたない.
同様にして正方行列
に対して行列式を定義すると
 |
 |
(581) |
 |
 |
(582) |
 |
 |
(583) |
|
 |
(584) |
|
 |
(585) |
となる.
一般に
行列では
 |
(586) |
となることが予想される.
ここで
は
から
の整数でお互いが異なる値をとる.
総和
はこの組合わせの全ての和をとる.
互いに異なる
個の組合わせを考えるので
足し合せる項は
である.
すなわちこの組合わせの集合
は
である.
の元の個数は順列組合わせの個数となるので
個である.
符合
は次節の置換の符合から定まる.
平成20年2月2日