next up previous contents
Next: 置換積分法 Up: 積分法 Previous: 不定積分の性質   Contents

不定積分の基本的な計算

$\displaystyle \frac{d}{dx}x=1 \qquad$ $\displaystyle \Leftrightarrow\qquad \int dx=x+C$ (680)
$\displaystyle \frac{d}{dx}x^{n+1}=(n+1)x^{n} \qquad$ $\displaystyle \Leftrightarrow\qquad \int x^{n}\,dx=\frac{x^{n+1}}{n+1}+C \quad(n\neq-1)$ (681)
$\displaystyle \frac{d}{dx}x^{\alpha+1}=(\alpha+1)x^{\alpha} \qquad$ $\displaystyle \Leftrightarrow\qquad \int x^{\alpha}\,dx=\frac{x^{\alpha+1}}{\alpha+1}+C \quad(\alpha\in\mathbb{R},\alpha\neq-1)$ (682)
$\displaystyle \left\{\begin{array}{cc} \displaystyle{\frac{d}{dx}\log x=\frac{1...
...isplaystyle{\frac{d}{dx}\log(-x)=\frac{1}{x}} & (x<0) \end{array}\right. \qquad$ $\displaystyle \Leftrightarrow\qquad \int\frac{1}{x}\,dx=\log\vert x\vert+C$ (683)
$\displaystyle \frac{d}{dx}e^{x}=e^{x} \qquad$ $\displaystyle \Leftrightarrow\qquad \int e^{x}\,dx=e^{x}+C$ (684)
$\displaystyle \frac{d}{dx}a^{x}=(\log a)a^{x} \qquad$ $\displaystyle \Leftrightarrow\qquad \int a^{x}\,dx=\frac{a^{x}}{\log a}+C \quad(a>0,a\neq1)$ (685)
$\displaystyle \frac{d}{dx}\cos x=-\sin x \qquad$ $\displaystyle \Leftrightarrow\qquad \int\sin x\,dx=-\cos x+C$ (686)
$\displaystyle \frac{d}{dx}\sin x=\cos x \qquad$ $\displaystyle \Leftrightarrow\qquad \int\cos x\,dx=\sin x+C$ (687)
$\displaystyle \frac{d}{dx}\tan x=\frac{1}{\cos^2x} \qquad$ $\displaystyle \Leftrightarrow\qquad \int\frac{1}{\cos^2 x}\,dx=\tan x+C$ (688)
$\displaystyle \frac{d}{dx}\arcsin x=\frac{1}{\sqrt{1-x^2}} \qquad$ $\displaystyle \Leftrightarrow\qquad \int\frac{1}{\sqrt{1-x^2}}\,dx=\arcsin x+C \quad(\vert x\vert<1)$ (689)
$\displaystyle \frac{d}{dx}\arctan x=\frac{1}{1+x^2} \qquad$ $\displaystyle \Leftrightarrow\qquad \int\frac{1}{1+x^2}\,dx=\arctan x+C$ (690)
$\displaystyle \frac{d}{dx}\cosh x=\sinh x \qquad$ $\displaystyle \Leftrightarrow\qquad \int\sinh x\,dx=\cosh x+C$ (691)
$\displaystyle \frac{d}{dx}\sinh x=\cosh x \qquad$ $\displaystyle \Leftrightarrow\qquad \int\cosh x\,dx=\sinh x+C$ (692)
$\displaystyle \frac{d}{dx}\tanh x=\frac{1}{\cosh^2x} \qquad$ $\displaystyle \Leftrightarrow\qquad \int\frac{1}{\cosh^2x}\,dx=\tanh x+C$ (693)
$\displaystyle \frac{d}{dx}\mathrm{arcsinh}\,x=\frac{1}{\sqrt{x^2+1}} \qquad$ $\displaystyle \Leftrightarrow\qquad \int\frac{1}{\sqrt{x^2+1}}\,dx=\mathrm{arcsinh}\,x+C$ (694)
$\displaystyle \frac{d}{dx}\mathrm{arccosh}\,x=\frac{1}{\sqrt{x^2-1}} \qquad$ $\displaystyle \Leftrightarrow\qquad \int\frac{1}{\sqrt{x^2-1}}\,dx=\mathrm{arccosh}\,x+C \quad(\vert x\vert>1)$ (695)
$\displaystyle \frac{d}{dx}\mathrm{arctanh}\,x=\frac{1}{1-x^2} \qquad$ $\displaystyle \Leftrightarrow\qquad \int\frac{1}{1-x^2}\,dx=\mathrm{arctanh}\,x+C \quad(x\neq1)$ (696)

例 5.4  

  $\displaystyle \int x^8\,dx=$ (697)
  $\displaystyle \int x^{\frac{1}{4}}\,dx=$ (698)
  $\displaystyle \int\frac{dx}{x^3}=$ (699)
  $\displaystyle \int(x^3-x^2+3x-2)\,dx=$ (700)


next up previous contents
Next: 置換積分法 Up: 積分法 Previous: 不定積分の性質   Contents

Kondo Koichi
Created at 2002/09/12