2.24 関数の極限
定義 2.83 (右極限,左極限) 変数を右から
に近づけたときの
の値が
に近づくとき
と書き,右極限(right-hand limit)と呼ぶ. 同様に, 変数を左から
に近づけたときの
の値が
に近づくとき
と書き,左極限(left-hand limit)と呼ぶ.また略記として
と書くこともある.
定義 2.84 (関数の極限) 変数を
に近づけるとき, その近づけ方に依らず全て同じ極限となるとき, すなわち
が成り立つとき, そのときに限りにおける関数
の極限が存在し,
と書く. 極限が存在するとき次のように表現する:
が
に限りなく近づくとき,
関数 には極限が存在し,その極限値は
である.
![]()
は
において
に収束する(convergent).
収束しないとき発散する(divergent)という.
例 2.85 (関数の極限の具体例) 関数を考える. このとき
となる. 右からの極限も左からの極限も存在し同じ値となる. よって
である.
例 2.86 (関数の極限の具体例) 関数
を考える.のとき
であるから 右極限は
となる.のとき
であるから 左極限は
となる. 右極限と左極限が一致しないので, 極限は存在しない.
例 2.87 (関数の極限の具体例) 関数
を考える.のとき
である.
であるから
は
と
の間を振動する. よって右極限
は存在しない.
のとき
である. 以下同様で左極限
は存在しない. 右極限も左極限も存在しないので, 極限
は存在しない.
平成19年10月3日