6.21 定積分の部分積分

定理 6.108 (部分積分)  

$\displaystyle \int_{a}^{b}f'(x)g(x)\,dx= \Big[f(x)g(x)\Big]_{a}^{b}- \int_{a}^{b}f(x)g'(x)\,dx\,.$    

6.109 (部分積分の計算例)  

$\displaystyle I$ $\displaystyle = \int_{0}^{\pi}x\,\sin x\,dx= \int_{0}^{\pi}x\,(-\cos x)'\,dx= \Big[-x\cos x\Big]_{0}^{\pi}- \int_{0}^{\pi}1\times(-\cos x)\,dx$    
  $\displaystyle = \Big[-x\cos x\Big]_{0}^{\pi}+ \int_{0}^{\pi}\cos x\,dx= \Big[-x...
...Big]_{0}^{\pi}+ \Big[\sin x\Big]_{0}^{\pi}= \Big[-x\cos x+\sin x\Big]_{0}^{\pi}$    
  $\displaystyle = (-\pi\cos\pi+\sin\pi)-(-0\times\cos0+\sin0)=\pi\,.$    

6.110 (部分積分の計算例)  

$\displaystyle I$ $\displaystyle = \int_{0}^{1}xe^{2x}\,dx= \frac{1}{2}\int_{0}^{1}x(e^{2x})'\,dx=...
...em width0em depth0.1em\,{\frac{1}{2}xe^{2x}-\frac{1}{4}e^{2x}}\,\right]_{0}^{1}$    
  $\displaystyle = \frac{e^2}{2}- \frac{e^2}{4}-0+ \frac{1}{4}= \frac{e^2+1}{4}\,.$    

6.111 (部分積分の計算例)  

$\displaystyle I$ $\displaystyle = \int_{0}^{1}\left(\mathrm{Sin}^{-1} x\right)^{4}\,dx= \int_{0}^{\pi/2}t^4\cos t\,dt=...$    

ここで, $ \displaystyle{t=\mathrm{Sin}^{-1}x}$, $ x=\sin t$ とおき, $ \displaystyle{\frac{dx}{dt}=\cos t}$, $ t=\mathrm{Sin}^{-1}0=0$, $ \displaystyle{t=\mathrm{Sin}^{-1}1=\frac{\pi}{2}}$ を用いた.


平成21年6月1日