6.23 三角関数の定積分

6.113 (三角関数の定積分)   自然数 $ n,m$ に対して

  $\displaystyle \int_{0}^{2\pi}\sin nx\,dx=0\,,$   $\displaystyle \int_{0}^{2\pi}\cos nx\,dx=0\,,$    
  $\displaystyle \int_{0}^{2\pi}\sin nx\,\sin mx\,dx=\pi\delta_{n,m}\,,$   $\displaystyle \int_{0}^{2\pi}\sin nx\,\cos mx\,dx=0\,,$   $\displaystyle \int_{0}^{2\pi}\cos nx\,\cos mx\,dx=\pi\delta_{n,m}$    

となることを示せ. ただし, $ \delta_{n,m}$クロネッカーのデルタ(Kronecker's delta) である.


(答え)    

  $\displaystyle \int_{0}^{2\pi}\cos nx\,dx= \left[\vrule height1.5em width0em dep...
...em\,{\frac{1}{n}\sin nx}\,\right]_{0}^{2\pi}= \frac{1}{n}(\sin 2n\pi-\sin 0)=0.$    
  $\displaystyle \int_{0}^{2\pi}\sin nx\,dx= \left[\vrule height1.5em width0em dep...
... nx}\,\right]_{0}^{2\pi}= \frac{-1}{n}(\cos 2n\pi-\cos 0)= \frac{-1}{n}(1-1)=0.$    

$ n\ne m$ のとき,

  $\displaystyle \int_{0}^{2\pi}\sin nx\,\sin mx\,dx= \frac{-1}{2} \int_{0}^{2\pi} (\cos(n+m)x-\cos(n-m)x)\,dx$    
  $\displaystyle = \frac{-1}{2} \left[\vrule height1.5em width0em depth0.1em\,{\fr...
...pi}= -\frac{\sin2(n+m)\pi-\sin0}{2(n+m)} +\frac{\sin2(n-m)\pi-\sin0}{2(n-m)}=0.$    
  $\displaystyle \int_{0}^{2\pi}\cos nx\,\cos mx\,dx= \frac{1}{2} \int_{0}^{2\pi} (\cos(n+m)x+\cos(n-m)x)\,dx$    
  $\displaystyle = \frac{1}{2} \left[\vrule height1.5em width0em depth0.1em\,{\fra...
...\pi}= \frac{\sin2(n+m)\pi-\sin0}{2(n+m)}+ \frac{\sin2(n-m)\pi-\sin0}{2(n-m)}=0.$    
  $\displaystyle \int_{0}^{2\pi}\sin nx\,\cos mx\,dx= \frac{1}{2} \int_{0}^{2\pi} (\sin(n+m)x+\sin(n-m)x)\,dx$    
  $\displaystyle = \frac{-1}{2} \left[\vrule height1.5em width0em depth0.1em\,{\fr...
...{2\pi}= -\frac{\cos2(n+m)\pi-\cos0}{2(n+m)} -\frac{\cos2(n-m)\pi-\cos0}{2(n-m)}$    
  $\displaystyle = -\frac{1-1}{2(n+m)} -\frac{1-1}{2(n-m)}=0.$    

$ n=m$ のとき,

  $\displaystyle \int_{0}^{2\pi} \sin nx\,\sin nx\,dx= \int_{0}^{2\pi} \sin^2 nx\,...
...t1.5em width0em depth0.1em\,{\frac{x}{2}-\frac{\sin 2x}{4}}\,\right]_{0}^{2\pi}$    
  $\displaystyle = \frac{2\pi-0}{2}-\frac{\sin 4\pi-\sin 0}{4}= \pi.$    
  $\displaystyle \int_{0}^{2\pi} \cos nx\,\cos nx\,dx= \int_{0}^{2\pi} \cos^2 nx\,...
...t1.5em width0em depth0.1em\,{\frac{\sin 2x}{4}+\frac{x}{2}}\,\right]_{0}^{2\pi}$    
  $\displaystyle = \frac{\sin 4\pi-\sin 0}{4}+\frac{2\pi-0}{2}= \pi.$    
  $\displaystyle \int_{0}^{2\pi} \sin nx\,\cos nx\,dx= \frac{1}{2} \int_{0}^{2\pi}...
...cos 2x}{4}}\,\right]_{0}^{2\pi}= -\frac{\cos 4\pi-\cos 0}{4}= -\frac{1-1}{4}=0.$    

6.114 (三角関数の定積分)   定積分

$\displaystyle I_{n}$ $\displaystyle = \int_{0}^{\frac{\pi}{2}}\cos^{n}x\,dx\,,\quad J_{n}= \int_{0}^{\frac{\pi}{2}}\sin^{n}x\,dx\,\qquad (n=0,1,2,\cdots)$    

  $\displaystyle I_{n}=J_{n}= \frac{(n-1)!!}{n!!}\varepsilon_{n}\,,\qquad \varepsi...
...($n$: 偶数)} \\ [2ex] \displaystyle{1} & \text{($n$: 奇数)} \end{array} \right.$    

となることを示せ(ヒント: 例 [*]を用いよ).


平成21年6月1日