2.30 2 次元空間の極座標
定義 2.124 (極座標) 2 次元空間において, 直交座標から 極座標(polar coordinates)
への 座標変換は
☆
で与えられる.
注意 2.125 (極座標) 極座標から 直交座標
への座標変換は
★
と表される.
![]()
例 2.126 (極座標における偏導関数の変換) 座標から極座標
への変換(☆)を考える. 関数
を
,
に関して偏微分は,
と合成関数の微分則より
△
と求まる. これは
♭
とも表される.が(☆)のヤコビ行列である. ナブラ演算子
を導入すると,
とも表される.
例 2.127 (極座標のヤコビアン) 座標変換(☆)のヤコビアンを求める. (♭)のの行列式がヤコビアンであり,
と得られる.
例 2.128 (極座標における偏微分作用素の変換) 極座標から座標
への変換(★)を考える. (☆)より導出された(△)は,
と書ける. 関数は任意であり省略すると
となる. (★)を用いて右辺の,
を
,
で表すと
となる. これは偏微分作用素における 極座標から座標
への座標変換である. 点に関する座標変換(☆)とは 変換の向きが異なることに注意する.
例 2.129 (極座標における偏微分作用素の変換) 座標から 極座標
への変換(☆)を考える. 関数
を
,
に関して偏微分すると, (★)と合成関数の微分則より
が成り立つ. さらに(☆)を用いて右辺を,
で表すと
▲
となる. これは
とも表される. この式は(♭)の両辺にを右から掛けることでも 得られる.すなわち,
となる. ここで,
と書くと,関数は任意であり省略すると
○
を得る. これは偏微分作用素における 座標から極座標
への座標変換である. 点に関する座標変換(★)とは 変換の向きが異なることに注意する.
例 2.130 (極座標への座標変換) 関数に対して関数
を考える. この関数を極座標で表す. (▲)を代入すると
を得る.
例 2.131 (極座標におけるラプラシアン) 関数に対して関数
を考える. この関数を極座標で表す. (○)より,
となる. よって
を得る.
例 2.132 (極座標におけるラプラシアン) ラプラス演算子
を座標で表す. 前例題より
が成り立つ.関数は任意であるから,
を得る.
平成21年12月2日